A255231 The number of factorizations n = Product_i b_i^e_i, where all bases b_i are distinct, and all exponents e_i are distinct >=1.
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 6, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 2, 2, 1, 1, 3
Offset: 1
Keywords
Examples
From _R. J. Mathar_, Nov 05 2016: (Start) a(4)=2: 4^1 = 2^2. a(8)=2: 8^1 = 2^3. a(9)=2: 9^1 = 3^2. a(12)=2: 12^1 = 2^2*3^1. a(16)=4: 16^1 = 4^2 = 2^2*4^1 = 2^4. a(18)=2: 18^1 = 2*3^2. a(20)=2: 20^1 = 2^2*5^1. a(24)=3: 24^1 = 2^2*6^1 = 2^3*3^1. a(32)=5: 32^1 = 2^1*4^2 = 2^2*8^1 = 2^3*4^1 = 2^5. a(36)=4: 36^1 = 6^2 = 3^2*4^1 = 2^2*9^1. a(48)=5: 48^1 = 3^1*4^2 = 2^2*12^1 = 2^3*6^1 = 2^4*3^1. a(60)=2 : 60^1 = 2^2*15^1. a(64)=7: 64^1 = 8^2 = 4^3 = 2^2*16^1 = 2^3*8^1 = 2^4*4^1 = 2^6. a(72)=6 : 72^1 = 3^2*8^1 = 2^1*6^2 = 2^2*18^1 = 2^3*9^1 = 2^3*3^2. (End)
Links
Crossrefs
Programs
-
Maple
# Count solutions for products if n = dvs_i^exps(i) where i=1..pividx are fixed Apiv := proc(n,dvs,exps,pividx) local dvscnt, expscopy,i,a,expsrt,e ; dvscnt := nops(dvs) ; a := 0 ; if pividx > dvscnt then # have exhausted the exponent list: leave of the recursion # check that dvs_i^exps(i) is a representation if n = mul( op(i,dvs)^op(i,exps),i=1..dvscnt) then # construct list of non-0 exponents expsrt := []; for i from 1 to dvscnt do if op(i,exps) > 0 then expsrt := [op(expsrt),op(i,exps)] ; end if; end do; # check that list is duplicate-free if nops(expsrt) = nops( convert(expsrt,set)) then return 1; else return 0; end if; else return 0 ; end if; end if; # need a local copy of the list to modify it expscopy := [] ; for i from 1 to nops(exps) do expscopy := [op(expscopy),op(i,exps)] ; end do: # loop over all exponents assigned to the next base in the list. for e from 0 do candf := op(pividx,dvs)^e ; if modp(n,candf) <> 0 then break; end if; # assign e to the local copy of exponents expscopy := subsop(pividx=e,expscopy) ; a := a+procname(n,dvs,expscopy,pividx+1) ; end do: return a; end proc: A255231 := proc(n) local dvs,dvscnt,exps ; if n = 1 then return 1; end if; # candidates for the bases are all divisors except 1 dvs := convert(numtheory[divisors](n) minus {1},list) ; dvscnt := nops(dvs) ; # list of exponents starts at all-0 and is # increased recursively exps := [seq(0,e=1..dvscnt)] ; # take any subset of dvs for the bases, i.e. exponents 0 upwards Apiv(n,dvs,exps,1) ; end proc: seq(A255231(n),n=1..120) ; # R. J. Mathar, Nov 05 2016
Formula
a(n)=1 for all n in A005117. a(n)=2 for all n in A001248 and for all n in A054753 and for all n in A085987 and for all n in A030078. a(n)=3 for all n in A065036. a(n)=4 for all n in A085986 and for all n in A030514. a(n)=5 for all n in A178739, all n in A179644 and for all n in A050997. a(n)=6 for all n in A143610, all n in A162142 and all n in A178740. a(n)=7 for all n in A030516. a(n)=9 for all n in A189988 and all n in A189987. a(n)=10 for all n in A092759. a(n) = 11 for all n in A179664. a(n)=12 for all n in A179646. - R. J. Mathar, Nov 05 2016, May 20 2017
Extensions
Values corrected. Incorrect comments removed. - R. J. Mathar, Nov 05 2016
Comments