A255233 Fundamental positive solution x = x2(n) of the second class of the Pell equation x^2 - 2*y^2 = -A007522(n), n >= 1 (primes congruent to 7 mod 8).
5, 7, 13, 9, 21, 11, 17, 29, 19, 15, 31, 37, 17, 27, 33, 23, 29, 21, 41, 47, 37, 23, 43, 33, 49, 55, 51, 31, 41, 69, 53, 29, 43, 59, 35, 31, 45, 61, 41, 67, 85, 57, 47, 63, 43, 53, 35, 75, 93, 37, 71, 61, 83, 47, 89, 39, 73, 53, 63, 79, 49, 85, 69, 97, 103, 109, 55, 65, 47, 77, 67, 83, 49
Offset: 1
Examples
The first pairs [x2(n), y2(n)] of the fundamental positive solutions of this second class are (the prime A007522(n) appears as first entry): [7, [5, 4]], [23, [7, 6]], [31, [13, 10]], [47, [9, 8]], [71, [21, 16]], [79, [11, 10]], [103, [17, 14]], [127, [29, 22]], [151, [19, 16]], [167, [15, 14]], [191, [31, 24]], [199, [37, 28]], [223, [17, 16]], [239, [27, 22]], [263, [33, 26]], [271, [23, 20]], [311, [29, 24]], [359, [21, 20]], [367, [41, 32]], [383, [47, 36]], [431, [37, 30]], [439, [23, 22]], [463, [43, 34]], [479, [33, 28]], ... n= 4: 9^2 - 2*(2*4)^2 = -47 = -A007522(4). a(4) = -(3*5 - 4*(2*3)) = 24 - 15 = 9.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..1000, May 22 2025
Crossrefs
Programs
-
PARI
apply( {A255233(n, p=A007522(n))=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1]*[-3,4]~}, [1..88]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025
Formula
Extensions
More terms from Colin Barker, Feb 23 2015
Double-checked and extended by M. F. Hasler, May 22 2025
Comments