A255237 Array of conversion coefficients for the minimal polynomials C of 2 cos(Pi/n) in terms of Chebyshev's S-polynomials.
1, 2, 1, 0, 1, -1, 1, -1, 0, 1, 0, -1, 1, -2, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, 1, -1, -1, 0, 1, 2, 0, -2, 0, 1, 0, 0, 0, 0, -1, 1, -1, 0, -1, 0, 1, 0, 0, 0, 0, 0, -1, 1, -2, 0, 2, 0, -2, 0, 1, -1, -2, -1, 1, 1
Offset: 0
Examples
The array T(n, m) begins: n\m 0 1 2 3 4 5 6 ... 0: 1 1: 2 1 2: 0 1 3: -1 1 4: -1 0 1 5: 0 -1 1 6: -2 0 1 7: 0 0 -1 1 8: 0 0 -1 0 1 9: -1 -1 0 1 10: 2 0 -2 0 1 11: 0 0 0 0 -1 1 12: -1 0 -1 0 1 13: 0 0 0 0 0 -1 1 14: -2 0 2 0 -2 0 1 15: -1 -2 -1 1 1 ... n=0: C(0, x) = 1 = 1*S(0, x), n=1: C(1, x) = 2 + x = 2*S(0, x) + 1*S(1, x), n=2: C(2, x) = x = 0*S(0, x) + 1*S(1, x), n=3: C(3, x) = -1 + x = -1*S(0, x) + 1*S(1, x), n=4: C(4, x) = -2 + x^2 = -1*S(0, x) + 0 + 1*S(2, x) = -1 + (-1 + x^2), ...
Formula
The conversion is C(n, x) = sum(T(n, m)*S(m, x), m = 0..delta(n)), that is
T(n, m) = [S(m, x)] C(n, x), n >= 0, m = 0, ..., delta(n), with C(0, x) := 1, delta(0) = 0 and delta(n) = A055034(n), n >= 1. For the C and S polynomials see A187360 and A049310, respectively.
For n >= 2: T(prime(n), (prime(n) -1)/2) = +1, T(prime(n), (prime(n) -3)/2) = -1 and T(prime(n), m) = 0 otherwise.
Comments