A255240 Decimal expansion of 1/(2*cos(Pi/7)).
5, 5, 4, 9, 5, 8, 1, 3, 2, 0, 8, 7, 3, 7, 1, 1, 9, 1, 4, 2, 2, 1, 9, 4, 8, 7, 1, 0, 0, 6, 4, 1, 0, 4, 8, 1, 0, 6, 7, 2, 8, 8, 8, 6, 2, 4, 7, 0, 9, 1, 0, 0, 8, 9, 3, 7, 6, 0, 2, 5, 9, 6, 8, 2, 0, 5, 1, 5, 7, 5, 3, 5, 9, 4, 2, 9, 0, 5, 3, 6, 1, 8, 5, 0, 8, 3, 7, 8, 9, 4, 7, 8, 3, 8, 5, 4, 0
Offset: 0
Examples
0.5549581320873711914221948710064104810672888624709100893760259682051575359...
Links
- Wolfdieter Lang, Archimedes's Construction of the Regular Heptagon.
- Daniel Shanks, The simplest cubic fields, Math. Comp., 28 (1974), 1137-1152.
- Index entries for algebraic numbers, degree 3.
Programs
-
Mathematica
RealDigits[1/(2*Cos[Pi/7]), 10, 100][[1]] (* Georg Fischer, Apr 04 2020 *)
Formula
1/rho(7) = 1/(2*cos(Pi/7)) = 0.55495813208...
From Peter Bala, Oct 10 2021: (Start)
t = 2*(cos(Pi/7) - cos(2*Pi/7)); t_1 = 2*(cos(3*Pi/7) - cos(6*Pi/7)); t_2 = 2*(cos(5*Pi/7) - cos(10*Pi/7)).
t = Product_{n >= 0} (7*n+1)*(7*n+6)/((7*n+2)*(7*n+5)) = 1 - Product_{n >= 0} (7*n+1)*(7*n+6)/((7*n+3)*(7*n+4)) = 1 - A255241. (End)
Equals Product_{k>=1} (1 + (-1)^k/A047385(k)). - Amiram Eldar, Nov 22 2024
Extensions
Name corrected by Georg Fischer, Apr 04 2020
Comments