A255287
Number of 1's in expansion of F^n mod 3, where F = 1/(x*y)+1/y+x/y+1/x+x+y/x+y+x*y.
Original entry on oeis.org
1, 8, 8, 8, 64, 52, 8, 64, 101, 8, 64, 64, 64, 512, 404, 52, 416, 448, 8, 64, 233, 64, 512, 700, 101, 808, 992, 8, 64, 64, 64, 512, 416, 64, 512, 808, 64, 512, 512, 512, 4096, 3220, 404, 3232, 3224, 52, 416, 832, 416, 3328
Offset: 0
The pairs [no. of 1's, no. of 2's] are [1, 0], [8, 0], [8, 13], [8, 0], [64, 0], [52, 32], [8, 13], [64, 104], [101, 112], [8, 0], [64, 0], [64, 104], [64, 0], [512, 0], [404, 184], [52, 32], [416, 256], [448, 296], [8, 13], [64, 104], [233, 208], [64, 104], [512, 832], [700, 836], [101, 112], [808, 896], [992, 1081], ...
-
# C3 Counts 1's and 2's
C3 := proc(f) local c,ix,iy,f2,i,t1,t2,n1,n2;
f2:=expand(f) mod 3; n1:=0; n2:=0;
if whattype(f2) = `+` then
t1:=nops(f2);
for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y);
c:=coeff(coeff(t2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; od: RETURN([n1,n2]);
else ix:=degree(f2, x); iy:=degree(f2, y);
c:=coeff(coeff(f2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; RETURN([n1,n2]);
fi;
end;
F1:=1/(x*y)+1/y+x/y+1/x+x+y/x+y+x*y mod 3;
g:=(F,n)->expand(F^n) mod 3;
[seq(C3(g(F1,n))[1],n=0..60)];
A255288
Number of 2's in expansion of F^n mod 3, where F = 1/(x*y)+1/y+x/y+1/x+x+y/x+y+x*y.
Original entry on oeis.org
0, 0, 13, 0, 0, 32, 13, 104, 112, 0, 0, 104, 0, 0, 184, 32, 256, 296, 13, 104, 208, 104, 832, 836, 112, 896, 1081, 0, 0, 104, 0, 0, 256, 104, 832, 896, 0, 0, 832, 0, 0, 1400, 184, 1472, 1768, 32, 256, 932, 256, 2048, 2692, 296
Offset: 0
The pairs [no. of 1's, no. of 2's] are [1, 0], [8, 0], [8, 13], [8, 0], [64, 0], [52, 32], [8, 13], [64, 104], [101, 112], [8, 0], [64, 0], [64, 104], [64, 0], [512, 0], [404, 184], [52, 32], [416, 256], [448, 296], [8, 13], [64, 104], [233, 208], [64, 104], [512, 832], [700, 836], [101, 112], [808, 896], [992, 1081], ...
-
# C3 Counts 1's and 2's
C3 := proc(f) local c,ix,iy,f2,i,t1,t2,n1,n2;
f2:=expand(f) mod 3; n1:=0; n2:=0;
if whattype(f2) = `+` then
t1:=nops(f2);
for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y);
c:=coeff(coeff(t2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; od: RETURN([n1,n2]);
else ix:=degree(f2, x); iy:=degree(f2, y);
c:=coeff(coeff(f2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; RETURN([n1,n2]);
fi;
end;
F1:=1/(x*y)+1/y+x/y+1/x+x+y/x+y+x*y mod 3;
g:=(F,n)->expand(F^n) mod 3;
[seq(C3(g(F1,n))[2],n=0..60)];
A255289
Number of 1's in expansion of F^n mod 3, where F = 1/(x*y)+2/y+x/y+2/x+2*x+y/x+2*y+x*y.
Original entry on oeis.org
1, 4, 12, 4, 32, 48, 12, 84, 117, 4, 32, 84, 32, 256, 300, 48, 336, 324, 12, 84, 225, 84, 672, 792, 117, 852, 876, 4, 32, 84, 32, 256, 336, 84, 672, 852, 32, 256, 672, 256, 2048, 2316, 300, 2352, 2448, 48, 336, 900, 336
Offset: 0
The pairs [no. of 1's, no. of 2's] are [1, 0], [4, 4], [12, 9], [4, 4], [32, 32], [48, 36], [12, 9], [84, 84], [117, 96], [4, 4], [32, 32], [84, 84], [32, 32], [256, 256], [300, 288], [48, 36], [336, 336], [324, 420], [12, 9], [84, 84], [225, 216], [84, 84], [672, 672], [792, 744], [117, 96], [852, 852], [876, 1197], ...
-
# C3 Counts 1's and 2's
C3 := proc(f) local c,ix,iy,f2,i,t1,t2,n1,n2;
f2:=expand(f) mod 3; n1:=0; n2:=0;
if whattype(f2) = `+` then
t1:=nops(f2);
for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y);
c:=coeff(coeff(t2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; od: RETURN([n1,n2]);
else ix:=degree(f2, x); iy:=degree(f2, y);
c:=coeff(coeff(f2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; RETURN([n1,n2]);
fi;
end;
F2:=1/(x*y)+2/y+x/y+2/x+2*x+y/x+2*y+x*y mod 3;
g:=(F,n)->expand(F^n) mod 3;
[seq(C3(g(F2,n))[1],n=0..60)];
A255290
Number of 2's in expansion of F^n mod 3, where F = 1/(x*y)+2/y+x/y+2/x+2*x+y/x+2*y+x*y.
Original entry on oeis.org
0, 4, 9, 4, 32, 36, 9, 84, 96, 4, 32, 84, 32, 256, 288, 36, 336, 420, 9, 84, 216, 84, 672, 744, 96, 852, 1197, 4, 32, 84, 32, 256, 336, 84, 672, 852, 32, 256, 672, 256, 2048, 2304, 288, 2352, 2544, 36, 336, 864, 336, 2688
Offset: 0
The pairs [no. of 1's, no. of 2's] are [1, 0], [4, 4], [12, 9], [4, 4], [32, 32], [48, 36], [12, 9], [84, 84], [117, 96], [4, 4], [32, 32], [84, 84], [32, 32], [256, 256], [300, 288], [48, 36], [336, 336], [324, 420], [12, 9], [84, 84], [225, 216], [84, 84], [672, 672], [792, 744], [117, 96], [852, 852], [876, 1197], ...
-
# C3 Counts 1's and 2's
C3 := proc(f) local c,ix,iy,f2,i,t1,t2,n1,n2;
f2:=expand(f) mod 3; n1:=0; n2:=0;
if whattype(f2) = `+` then
t1:=nops(f2);
for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y);
c:=coeff(coeff(t2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; od: RETURN([n1,n2]);
else ix:=degree(f2, x); iy:=degree(f2, y);
c:=coeff(coeff(f2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; RETURN([n1,n2]);
fi;
end;
F2:=1/(x*y)+2/y+x/y+2/x+2*x+y/x+2*y+x*y mod 3;
g:=(F,n)->expand(F^n) mod 3;
[seq(C3(g(F2,n))[2],n=0..60)];
A255291
Number of 1's in expansion of F^n mod 3, where F = 1/x+1+x+1/y+y.
Original entry on oeis.org
1, 5, 4, 5, 25, 12, 4, 20, 69, 5, 25, 20, 25, 125, 52, 12, 60, 281, 4, 20, 97, 20, 100, 353, 69, 345, 448, 5, 25, 20, 25, 125, 60, 20, 100, 345, 25, 125, 100, 125, 625, 252, 52, 260, 1341, 12, 60, 381, 60, 300, 1413, 281, 1405
Offset: 0
The pairs [no. of 1's, no. of 2's] are [1, 0], [5, 0], [4, 9], [5, 0], [25, 0], [12, 37], [4, 9], [20, 45], [69, 44], [5, 0], [25, 0], [20, 45], [25, 0], [125, 0], [52, 177], [12, 37], [60, 185], [281, 156], [4, 9], [20, 45], [97, 72], [20, 45], [100, 225], [353, 228], [69, 44], [345, 220], [448, 573], [5, 0], [25, 0], [20, 45], ...
-
# C3 Counts 1's and 2's
C3 := proc(f) local c,ix,iy,f2,i,t1,t2,n1,n2;
f2:=expand(f) mod 3; n1:=0; n2:=0;
if whattype(f2) = `+` then
t1:=nops(f2);
for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y);
c:=coeff(coeff(t2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; od: RETURN([n1,n2]);
else ix:=degree(f2, x); iy:=degree(f2, y);
c:=coeff(coeff(f2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; RETURN([n1,n2]);
fi;
end;
F3:=1/x+1+x+1/y+y mod 3;
g:=(F,n)->expand(F^n) mod 3;
[seq(C3(g(F3,n))[1],n=0..60)];
A255292
Number of 2's in expansion of F^n mod 3, where F = 1/x+1+x+1/y+y.
Original entry on oeis.org
0, 0, 9, 0, 0, 37, 9, 45, 44, 0, 0, 45, 0, 0, 177, 37, 185, 156, 9, 45, 72, 45, 225, 228, 44, 220, 573, 0, 0, 45, 0, 0, 185, 45, 225, 220, 0, 0, 225, 0, 0, 877, 177, 885, 716, 37, 185, 256, 185, 925, 788, 156, 780, 2281, 9
Offset: 0
The pairs [no. of 1's, no. of 2's] are [1, 0], [5, 0], [4, 9], [5, 0], [25, 0], [12, 37], [4, 9], [20, 45], [69, 44], [5, 0], [25, 0], [20, 45], [25, 0], [125, 0], [52, 177], [12, 37], [60, 185], [281, 156], [4, 9], [20, 45], [97, 72], [20, 45], [100, 225], [353, 228], [69, 44], [345, 220], [448, 573], [5, 0], [25, 0], [20, 45], ...
-
# C3 Counts 1's and 2's
C3 := proc(f) local c,ix,iy,f2,i,t1,t2,n1,n2;
f2:=expand(f) mod 3; n1:=0; n2:=0;
if whattype(f2) = `+` then
t1:=nops(f2);
for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y);
c:=coeff(coeff(t2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; od: RETURN([n1,n2]);
else ix:=degree(f2, x); iy:=degree(f2, y);
c:=coeff(coeff(f2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; RETURN([n1,n2]);
fi;
end;
F3:=1/x+1+x+1/y+y mod 3;
g:=(F,n)->expand(F^n) mod 3;
[seq(C3(g(F3,n))[2],n=0..60)];
A255293
Number of 1's in expansion of F^n mod 3, where F = 1/x+2+x+1/y+y.
Original entry on oeis.org
1, 4, 8, 4, 17, 29, 8, 37, 49, 4, 17, 37, 17, 76, 128, 29, 136, 196, 8, 37, 89, 37, 176, 292, 49, 260, 584, 4, 17, 37, 17, 76, 136, 37, 176, 260, 17, 76, 176, 76, 353, 605, 128, 613, 961, 29, 136, 332, 136, 653, 1105, 196
Offset: 0
The pairs [no. of 1's, no. of 2's] are [1, 0], [4, 1], [8, 5], [4, 1], [17, 8], [29, 20], [8, 5], [37, 28], [49, 64], [4, 1], [17, 8], [37, 28], [17, 8], [76, 49], [128, 101], [29, 20], [136, 109], [196, 241], [8, 5], [37, 28], [89, 80], [37, 28], [176, 149], [292, 289], [49, 64], [260, 305], [584, 437], [4, 1], [17, 8], [37, 28], ...
-
# C3 Counts 1's and 2's
C3 := proc(f) local c,ix,iy,f2,i,t1,t2,n1,n2;
f2:=expand(f) mod 3; n1:=0; n2:=0;
if whattype(f2) = `+` then
t1:=nops(f2);
for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y);
c:=coeff(coeff(t2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; od: RETURN([n1,n2]);
else ix:=degree(f2, x); iy:=degree(f2, y);
c:=coeff(coeff(f2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; RETURN([n1,n2]);
fi;
end;
F4:=1/x+2+x+1/y+y mod 3;
g:=(F,n)->expand(F^n) mod 3;
[seq(C3(g(F4,n))[1],n=0..60)];
Showing 1-7 of 7 results.
Comments