A255330 a(n) = total number of nodes in the finite subtrees branching from the node n in the infinite trunk of "number-of-runs beanstalk" (A255056).
1, 2, 0, 4, 1, 0, 7, 0, 3, 1, 0, 5, 2, 6, 0, 6, 0, 3, 1, 0, 5, 2, 12, 0, 2, 5, 0, 4, 2, 6, 0, 6, 0, 3, 1, 0, 5, 2, 12, 0, 2, 7, 1, 12, 4, 0, 2, 5, 0, 4, 2, 12, 0, 2, 5, 0, 4, 2, 6, 0, 6, 0, 3, 1, 0, 5, 2, 12, 0, 2, 7, 1, 12, 4, 0, 2, 7, 1, 10, 17, 0, 0, 1, 11, 4, 0, 2, 5, 0, 4, 2, 12, 0, 2, 7, 1, 12, 4, 0, 2, 5, 0, 4, 2, 12, 0, 2, 5, 0, 4, 2, 6, 0, 6, 0, 3, 1, 0, 5
Offset: 0
Keywords
Examples
The edge-relation between nodes is given by A236840(child) = parent. Odd numbers are leaves, as there are no such k that A236840(k) were odd. The node 11 in the infinite trunk is A255056(11) = 30. Apart from 32 [we have A236840(32) = 30] which is the next node (node 12) in the infinite trunk, it has a single leaf-child 31 [A236840(31) = 30] at the "left side" (less than 32), and a leaf-child 33 [A236840(33) = 30] (more than 32) at the "right side", and also at that side, a subtree of three nodes 34 <- 38 <- 43 [we have A236840(43) = 38, A236840(38) = 34 and A236840(34) = 30], thus in total there are 1+1+3 = 5 nodes in finite branches emanating from the node 11 of the infinite trunk, and a(11) = 5.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..8590
Comments