A255334 Numbers n for which there exists k > n such that A000203(k) = A000203(n) and A007947(k) = A007947(n), where A000203 gives the sum of divisors, and A007947 gives the squarefree kernel of n.
1512, 7560, 16632, 19656, 25704, 28728, 34776, 37800, 43848, 44928, 46872, 55944, 61992, 65016, 71064, 80136, 83160, 89208, 92232, 98280, 101304, 107352, 110376, 119448, 125496, 128520, 134568, 143640, 146664, 152712, 155736, 161784, 164808, 170856, 173880, 182952, 189000, 192024, 198072, 207144, 210168, 216216
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..6589
Crossrefs
Programs
-
PARI
A007947(n) = factorback(factorint(n)[, 1]); \\ Andrew Lelechenko, May 09 2014 isA255334(n) = { my(r=A007947(n), s=sigma(n), k=n+r); while(k
A007947(k) == r), return(1), k = k+r)); return(0); }; i=0; for(n=1, 2^25, if(isA255334(n), i++; write("b255334.txt", i, " ", n))) -
Scheme
;; With Antti Karttunen's IntSeq-library. Quite naive and slow implementation. (define A255334 (MATCHING-POS 1 1 isA255334?)) (define (isA255334? n) (let ((sig_n (A000203 n)) (rad_n (A007947 n))) (let loop ((try (+ n rad_n))) (cond ((>= try sig_n) #f) ((and (= sig_n (A000203 try)) (= rad_n (A007947 try))) #t) (else (loop (+ try rad_n)))))))
Comments