cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255342 Numbers n such that there are exactly two 1's in their factorial base representation (A007623).

Original entry on oeis.org

3, 7, 8, 11, 15, 21, 25, 26, 29, 30, 34, 37, 38, 41, 43, 44, 47, 51, 55, 56, 59, 63, 69, 75, 79, 80, 83, 87, 93, 99, 103, 104, 107, 111, 117, 121, 122, 125, 126, 130, 133, 134, 137, 139, 140, 143, 144, 148, 156, 160, 162, 166, 169, 170, 173, 174, 178, 181, 182, 185, 187, 188, 191, 193, 194, 197, 198, 202
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2015

Keywords

Examples

			The factorial base representation (A007623) of 3 is "11", which contains exactly two 1's, thus 3 is included in the sequence.
The f.b.r. of 7 is "101", with exactly two 1's, thus 7 is included in the sequence.
The f.b.r. of 21 is "311", with exactly two 1's, thus 21 is included in the sequence.
		

Crossrefs

Subsequence of A256450.
Subsequence: A038507 (apart from its initial 2 terms).

Programs

  • Mathematica
    factBaseIntDs[n_] := Module[{m, i, len, dList, currDigit}, i = 1; While[n > i!, i++]; m = n; len = i; dList = Table[0, {len}]; Do[currDigit = 0; While[m >= j!, m = m - j!; currDigit++]; dList[[len - j + 1]] = currDigit, {j, i, 1, -1}]; If[dList[[1]] == 0, dList = Drop[dList, 1]]; dList]; s = Table[FromDigits[factBaseIntDs[n]], {n, 240}]; Flatten@ Position[s, x_ /; DigitCount[x][[1]] == 2](* Michael De Vlieger, Apr 27 2015, after Alonso del Arte at A007623 *)