A255350 Number of ways to write n as a*(2a-1)+ b*(2b-1) + c*(2c+1) + d*(2d+1), where a,b,c,d are nonnegative integers with a <= b and c <= d.
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 3, 2, 1, 3, 2, 1, 2, 2, 2, 4, 4, 1, 2, 3, 3, 3, 3, 2, 2, 4, 3, 3, 3, 2, 5, 4, 3, 3, 4, 3, 4, 5, 2, 3, 5, 3, 5, 5, 2, 5, 5, 3, 5, 4, 4, 5, 6, 5, 4, 4, 3, 4, 5, 5, 7, 7, 1, 5, 7, 4, 7, 7, 4, 3, 8, 5, 5, 6, 6, 5, 6, 4, 6, 6, 5, 10, 7, 3, 5, 8, 7, 9, 7, 4, 4, 9, 5, 4, 8
Offset: 0
Keywords
Examples
a(23) = 1 since 23 = 1*(2*1-1) + 1*(2*1-1) + 0*(2*0+1) + 3*(2*3+1). a(68) = 1 since 68 = 1*(2*1-1) + 4*(2*4-1) + 1*(2*1+1) + 4*(2*4+1).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, On universal sums of polygonal numbers, arXiv:0905.0635 [math.NT], 2009-2015.
- Zhi-Wei Sun, On universal sums a*x^2+b*y^2+f(z), a*T_x+b*T_y+f(z) and a*T_x+b*y^2+f(z), arXiv:1502.03056 [math.NT], 2015.
Programs
-
Mathematica
HQ[n_]:=IntegerQ[Sqrt[8n+1]]&&Mod[Sqrt[8n+1],4]==1 Do[r=0;Do[If[HQ[n-x(2x-1)-y(2y-1)-z(2z+1)],r=r+1],{x,0,(Sqrt[4n+1]+1)/4},{y,x,(Sqrt[8(n-x(2x-1))+1]+1)/4},{z,0,(Sqrt[4(n-x(2x-1)-y(2y-1))+1]-1)/4}]; Print[n," ",r];Continue,{n,0,10000}]
Comments