A255934 Number of ways to write n as the sum of four unordered generalized octagonal numbers.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 3, 2, 3, 2, 1, 3, 3, 3, 3, 2, 4, 2, 1, 3, 2, 3, 4, 3, 4, 2, 2, 4, 4, 3, 4, 3, 6, 5, 2, 4, 3, 4, 5, 4, 6, 4, 1, 4, 5, 4, 5, 5, 7, 4, 1, 5, 5, 5, 6, 5, 8, 5, 3, 4, 6, 6, 6, 6, 7, 6, 3, 6, 6, 5, 6, 6, 10, 7, 1, 5, 8, 7, 7, 7, 8, 5, 3, 6, 7, 6, 8, 7, 10, 8, 3
Offset: 0
Keywords
Examples
a(60) = 1 since 60 = 1*(3*1-2) + (-1)*(3*(-1)-2) + 3*(3*3-2) + (-3)*(3*(-3)-2). a(1876) = 1 since 1876 = (-5)*(3*(-5)-2) + (-5)*(3*(-5)-2) + 11*(3*11-2) + (-21)*(3*(-21)-2). a(15700) = 1 since 15700 = 11*(3*11-2) + (-21)*(3*(-21)-2) + 43*(3*43-2) + (-53)*(3*(-53)-2). a(21844) = 1 since 21844 = 43*(3*43-2) + 43*(3*43-2) + 43*(3*43-2) + 43*(3*43-2). a(30036) = 1 since 30036 = (-21)*(3*(-21)-2) + (-21)*(3*(-21)-2) + 43*(3*43-2) + (-85)*(3*(-85)-2).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, On universal sums of polygonal numbers, arXiv:0905.0635 [math.NT], 2009-2015.
- Zhi-Wei Sun, A result similar to Lagrange's theorem, arXiv:1503.03743 [math.NT], 2015.
Programs
-
Mathematica
T[n_]:=Union[Table[x(3x-2),{x,-Floor[(Sqrt[3n+1]-1)/3],Floor[(Sqrt[3n+1]+1)/3]}]] Do[r=0;Do[If[n-Part[T[n],x]-Part[T[n],y]-Part[T[n],z]
Comments