A256171 Number of ways to write n as the sum of three unordered generalized heptagonal numbers.
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 1, 2, 1, 2, 3, 0, 1, 3, 1, 2, 3, 1, 1, 1, 1, 3, 3, 1, 2, 1, 2, 3, 1, 2, 4, 2, 1, 3, 2, 2, 3, 2, 1, 2, 2, 2, 3, 3, 2, 1, 2, 2, 3, 5, 2, 2, 2, 2, 3, 4, 2, 2, 4, 1, 3, 2, 1, 4, 3, 2, 2, 5, 2, 4, 3, 0, 4, 2, 1, 3, 6, 3, 3, 3, 1, 5, 2, 3, 5, 2, 2, 3, 3, 1, 5, 3, 1, 3, 3, 4
Offset: 0
Keywords
Examples
a(157) = 1 since 157 = 3*(5*3-3)/2 + (-3)*(5*(-3)-3)/2 + 7*(5*7-3)/2. a(748) = 1 since 748 = 0*(5*0-3)/2 + 0*(5*0-3)/2 + (-17)*(5*(-17)-3)/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- R. K. Guy, Every number is expressible as the sum of how many polygonal numbers?, Amer. Math. Monthly 101 (1994), 169-172.
- Zhi-Wei Sun, A result similar to Lagrange's theorem, arXiv:1503.03743 [math.NT], 2015.
Programs
-
Mathematica
T[n_]:=Union[Table[x(5x-3)/2, {x, -Floor[(Sqrt[40n+9]-3)/10], Floor[(Sqrt[40n+9]+3)/10]}]] L[n_]:=Length[T[n]] Do[r=0;Do[If[Part[T[n],x]>n/3,Goto[aa]];Do[If[Part[T[n],x]+2*Part[T[n],y]>n,Goto[bb]]; If[MemberQ[T[n], n-Part[T[n],x]-Part[T[n],y]]==True,r=r+1]; Continue,{y,x,L[n]}];Label[bb];Continue,{x,1,L[n]}];Label[aa];Print[n," ",r];Continue, {n,0,100}]
Comments