A255354 a(n) = smallest number k such that (k + n)' = k', or -1 if no such number exists, where k' is the arithmetic derivative of k.
2, 3, 2, 3, 2, 5, 110, 3, 2, 3, 2, 5, 50145, 3, 2, 3, 2, 5, 53115, 3, 2, 7, 189, 5, 273, 3, 2, 3, 2, 7, 75, 5, 930642191642, 3, 2, 5, 165, 3, 2, 3, 2, 5, 12, 3, 2, 7, 99, 5, 182, 3, 2, 7, 706, 5, 1523965807, 3, 2, 3, 2, 7, 494, 5
Offset: 1
Examples
a(1) = 2 because (2 + 1)' = 2' = 1. a(2) = 3 because (3 + 2)' = 3' = 1. a(3) = 2 because (2 + 3)' = 2' = 1. ... a(7) = 110 because (110 + 7)' = 110' = . Etc.
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,k,n,p; for n from 1 to q do for k from 1 to q do a:=k*add(op(2,p)/op(1,p),p=ifactors(k)[2]); b:=(k+n)*add(op(2,p)/op(1,p),p=ifactors(k+n)[2]); if a=b then print(k); break; fi; od; od; end: P(10^20);
Extensions
a(33)-a(62) from Giovanni Resta, Jun 22 2018
Comments