A255367 a(n) = r^(p-2) mod p, where p is the n-th prime and r is the least positive primitive root of p.
1, 2, 3, 5, 6, 7, 6, 10, 14, 15, 21, 19, 7, 29, 19, 27, 30, 31, 34, 61, 44, 53, 42, 30, 39, 51, 62, 54, 91, 38, 85, 66, 46, 70, 75, 126, 63, 82, 67, 87, 90, 91, 181, 116, 99, 133, 106, 149, 114, 191, 78, 205, 69, 42, 86, 158, 135, 226, 111, 94, 189, 147, 123
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= n-> (p-> numtheory[primroot](p)&^(p-2) mod p)(ithprime(n)): seq(a(n), n=1..70);
-
Mathematica
a[n_] := With[{p = Prime[n]}, Mod[PrimitiveRoot[p]^(p-2), p]]; Array[a, 70] (* Jean-François Alcover, Mar 24 2017 *)
Comments