cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255397 Number of multimin-partitions of normal multisets of weight n.

Original entry on oeis.org

1, 1, 4, 18, 92, 528, 3356, 23344, 175984, 1426520, 12352600, 113645488, 1105760224, 11333738336, 121957021744, 1373618201360, 16151326356192, 197796234588800, 2517603785738752, 33242912468993312, 454583512625280256, 6427749935432143072, 93847133530055987840
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2015

Keywords

Comments

A multiset is normal if its entries span an initial interval of positive integers. A multimin-partition is any sequence of multisets whose minima are weakly increasing. In a suitable category (see example) multimin-partitions m=(m_1,...,m_k) are morphisms m : U(m_1,...,m_k) -> {min(m_1),...,min(m_k)} where U denotes multiset union and min denotes minimum.

Examples

			For a(3) = 18
[[1][2][3]]:[123]->[123]
[[1][23]]:[123]->[12]
[[13][2]]:[123]->[12]
[[12][3]]:[123]->[13]
[[123]]:[123]->[1]
[[1][2][2]]:[122]->[122]
[[1][22]]:[122]->[12]
[[12][2]]:[122]->[12]
[[122]]:[122]->[1]
[[1][1][2]]:[112]->[112]
[[1][12]]:[112]->[11]
[[12][1]]:[112]->[11]
[[11][2]]:[112]->[12]
[[112]]:[112]->[1]
[[1][1][1]]:[111]->[111]
[[1][11]]:[111]->[11]
[[11][1]]:[111]->[11]
[[111]]:[111]->[1]
		

Crossrefs

Cf. A262671.

Programs

  • Mathematica
    mmcount[m_List] := mmcount[m] = If[Length[m] === 0, 0, 1 + Plus @@ mmcount /@ Union[Subsets[Rest[m]]]];
    mmallnorm[n_Integer] := Function[s, Array[Count[s, y_ /; y <= #] + 1 &, n]] /@ Subsets[Range[n - 1] + 1];
    Array[Plus @@ mmcount /@ mmallnorm[#] &, 13]
  • PARI
    R(n,k)=Vec(prod(j=1, k, 1/(1 - x/(1-x + O(x^n))^j)) + O(x*x^n))
    seq(n)={sum(k=0, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Feb 04 2021

Extensions

a(14)-a(15) from Vaclav Kotesovec, Feb 22 2015
a(0)=1 prepended and terms a(16) and beyond from Andrew Howroyd, Feb 04 2021