A255397 Number of multimin-partitions of normal multisets of weight n.
1, 1, 4, 18, 92, 528, 3356, 23344, 175984, 1426520, 12352600, 113645488, 1105760224, 11333738336, 121957021744, 1373618201360, 16151326356192, 197796234588800, 2517603785738752, 33242912468993312, 454583512625280256, 6427749935432143072, 93847133530055987840
Offset: 0
Keywords
Examples
For a(3) = 18 [[1][2][3]]:[123]->[123] [[1][23]]:[123]->[12] [[13][2]]:[123]->[12] [[12][3]]:[123]->[13] [[123]]:[123]->[1] [[1][2][2]]:[122]->[122] [[1][22]]:[122]->[12] [[12][2]]:[122]->[12] [[122]]:[122]->[1] [[1][1][2]]:[112]->[112] [[1][12]]:[112]->[11] [[12][1]]:[112]->[11] [[11][2]]:[112]->[12] [[112]]:[112]->[1] [[1][1][1]]:[111]->[111] [[1][11]]:[111]->[11] [[11][1]]:[111]->[11] [[111]]:[111]->[1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Gus Wiseman, Comcategories and Multiorders
Crossrefs
Cf. A262671.
Programs
-
Mathematica
mmcount[m_List] := mmcount[m] = If[Length[m] === 0, 0, 1 + Plus @@ mmcount /@ Union[Subsets[Rest[m]]]]; mmallnorm[n_Integer] := Function[s, Array[Count[s, y_ /; y <= #] + 1 &, n]] /@ Subsets[Range[n - 1] + 1]; Array[Plus @@ mmcount /@ mmallnorm[#] &, 13]
-
PARI
R(n,k)=Vec(prod(j=1, k, 1/(1 - x/(1-x + O(x^n))^j)) + O(x*x^n)) seq(n)={sum(k=0, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Feb 04 2021
Extensions
a(14)-a(15) from Vaclav Kotesovec, Feb 22 2015
a(0)=1 prepended and terms a(16) and beyond from Andrew Howroyd, Feb 04 2021
Comments