cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255415 Row 5 of Ludic array A255127.

Original entry on oeis.org

11, 55, 103, 151, 203, 251, 299, 343, 391, 443, 491, 539, 587, 631, 683, 731, 779, 827, 877, 923, 971, 1019, 1067, 1117, 1165, 1211, 1259, 1307, 1357, 1405, 1453, 1499, 1547, 1597, 1645, 1693, 1741, 1787, 1837, 1885, 1933, 1981, 2033, 2077, 2125, 2173, 2221, 2273, 2321, 2365, 2413, 2461, 2513, 2561, 2609, 2653, 2701, 2753, 2801, 2849, 2897, 2941, 2993, 3041
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2015

Keywords

Comments

First differences are periodic with period length 48, cf. formulas. - M. F. Hasler, Nov 17 2024

Crossrefs

Row 5 of A255127. See A255414 for row 4 and A255416 for row 6.

Programs

  • PARI
    L255415=[n*337\14*2+7|n<-[0..47]]+digits(54129937554927109457534, 3)*2
    apply( A255415(n)=n--\48*2310+L255415[n%48+1], [1..66]) \\ M. F. Hasler, Nov 10 2024
  • Scheme
    (define (A255415 n) (A255127bi 5 n)) ;; Code for A255127bi given in A255127.
    

Formula

a(n) = A255407(A084969(n)).
a(n) = a(n-48) + 2310 = a((n-1)%48 + 1) + [(n-1)/48]*2310, where % = mod = remainder operator, and [.] = floor. - M. F. Hasler, Nov 10 2024