A255419 Row 9 of Ludic array A255127.
25, 167, 311, 457, 599, 745, 883, 1033, 1181, 1321, 1469, 1615, 1753, 1903, 2041, 2191, 2339, 2483, 2623, 2773, 2911, 3059, 3211, 3353, 3493, 3637, 3781, 3929, 4067, 4217, 4367, 4507, 4657, 4795, 4937, 5087, 5227, 5377, 5527, 5665, 5813, 5957, 6101, 6241, 6389, 6535, 6683, 6821, 6971, 7111
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10001
Programs
-
PARI
my(L=vector(97847750, x, 3*x+1+x%2), m(n, k)=2^(n\/k*k)\(2^k-1)); for(i=3, 8, L=vecextract(L, 2^#L-m(#L, L[1])-1)); L255419=vecextract(L, m(#L, L[1])); \\ If only terms up to N < P are needed, the vector L above can be chosen shorter A255419(n, P=2027520)=n--\P*293543250 + L255419[n%P+1] \\ M. F. Hasler, Nov 17 2024
-
Python
# if only terms up to a smaller limit S are needed, then S can be decreased def A255419(n, S=293543250, P=2027520): try: n -= 1; return A255419.L[n] except IndexError: return A255419.L[n%P] + n//P*S except AttributeError: L = [x+5-x%2 for x in range(0, S, 3)] while (k:=L[0]) < 25: L = [x for i, x in enumerate(L) if i%k] A255419.L = L[::k]; return A255419(n+1) # M. F. Hasler, Nov 17 2024
-
Scheme
(define (A255419 n) (A255127bi 9 n)) ;; Code for A255127bi given in A255127.
Formula
a(n) = a(n-P) + S = a((n-1)%P + 1) + S*floor((n-1)/P) with period P = 2027520 = A377469(9) and shift S = 293543250 = A376237(10). - M. F. Hasler, Nov 17 2024
Comments