A255438 Decimal expansion of a constant related to A255359.
6, 6, 4, 4, 9, 8, 7, 9, 1, 8, 7, 0, 6, 3, 5, 4, 0, 4, 9, 4, 8, 3, 1, 1, 8, 3, 1, 6, 7, 3, 7, 8, 4, 2, 6, 6, 0, 0, 7, 5, 3, 6, 2, 6, 5, 2, 0, 0, 5, 2, 0, 1, 5, 6, 1, 3, 2, 6, 2, 9, 0, 4, 2, 8, 7, 1, 0, 3, 7, 1, 4, 7, 3, 4, 0, 3, 3, 7, 9, 5, 6, 1, 2, 9, 5, 0, 7, 9
Offset: 1
Examples
6.644987918706354049483118316737842660075362652005201561326290428710371...
Formula
Equals limit n->infinity (Product_{k=0..n} (k^4)!) / (n^(1 + 28*n/15 + 4*n^3/3 + 2*n^4 + 4*n^5/5) * (2*Pi)^(n/2) / exp(19*n/9 + n^4/2 + 9*n^5/25)).
Equals 2*Pi*exp(-3*Zeta(5)/Pi^4) * Product_{n>=1} ((n^4)!/stirling(n^4)), where stirling(n^4) = sqrt(2*Pi) * n^(4*n^4 + 2) / exp(n^4) is the Stirling approximation of (n^4)! and Zeta(5) = A013663. - Vaclav Kotesovec, Apr 20 2016