cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A255504 Decimal expansion of a constant related to A255322.

Original entry on oeis.org

3, 0, 4, 8, 3, 3, 0, 3, 0, 6, 5, 2, 2, 3, 4, 8, 5, 6, 6, 9, 1, 1, 9, 2, 0, 4, 1, 7, 3, 3, 7, 6, 1, 3, 0, 1, 5, 8, 8, 5, 3, 1, 3, 4, 7, 5, 6, 8, 9, 0, 4, 9, 1, 8, 4, 5, 2, 5, 4, 8, 3, 6, 9, 7, 6, 8, 4, 8, 3, 4, 1, 6, 5, 3, 3, 9, 0, 8, 8, 1, 4, 5, 1, 4, 6, 6, 7, 7, 6, 7, 0, 2, 2, 1, 6, 0, 5, 1, 6, 7, 7, 1, 9, 1, 8
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Examples

			3.048330306522348566911920417337613015885313475689049184525483697684834...
		

Crossrefs

Formula

Equals limit n->infinity (Product_{k=0..n} (k^2)!) / (n^((2*n + 1)*(2*n^2 + 2*n + 3)/6) * (2*Pi)^(n/2) / exp(5*n^3/9 + n^2/2 + n)).
Equals sqrt(2*Pi) * exp(Zeta(3)/(2*Pi^2)) * Product_{n>=1} ((n^2)!/stirling(n^2)), where stirling(n^2) = sqrt(2*Pi) * n^(2*n^2+1) / exp(n^2) is the Stirling approximation of (n^2)!. - Vaclav Kotesovec, Apr 20 2016

A255359 a(n) = Product_{k=0..n} (k^4)!.

Original entry on oeis.org

1, 1, 20922789888000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 21 2015

Keywords

Comments

The next term a(3) has 135 digits.

Crossrefs

Programs

  • Mathematica
    Table[Product[(k^4)!, {k, 0, n}], {n, 0, 5}]
    Table[Product[j^(n - Ceiling[j^(1/4)] + 1), {j, 1, n^4}], {n, 0, 5}] (* Vaclav Kotesovec, Apr 25 2024 *)

Formula

a(n) ~ c * n^(1 + 28*n/15 + 4*n^3/3 + 2*n^4 + 4*n^5/5) * (2*Pi)^(n/2) / exp(19*n/9 + n^4/2 + 9*n^5/25), where c = A255438 = 6.644987918706354049483118... .
a(n) = Product_{j=1..n^4} j^(n - ceiling(j^(1/4)) + 1). - Vaclav Kotesovec, Apr 25 2024

A255439 Decimal expansion of a constant related to A255360.

Original entry on oeis.org

1, 1, 3, 5, 4, 9, 5, 4, 7, 4, 9, 7, 2, 9, 7, 8, 2, 3, 1, 2, 1, 0, 6, 6, 3, 0, 5, 9, 2, 4, 5, 0, 2, 1, 5, 7, 8, 1, 0, 1, 4, 0, 4, 6, 1, 3, 7, 1, 2, 0, 0, 7, 9, 8, 3, 2, 9, 2, 8, 0, 2, 3, 9, 6, 0, 7, 8, 8, 1, 8, 8, 2, 6, 2, 8, 0, 7, 9, 9, 1, 2, 5, 1, 5, 9, 3, 6
Offset: 2

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Examples

			11.354954749729782312106630592450215781014...
		

Crossrefs

Formula

Equals limit n->infinity (Product_{k=0..n} (k^5)!) / (n^(80/63 + 5*n/2 - 5*n^2/12 + 25*n^4/12 + 5*n^5/2 + (5*n^6)/6) * (2*Pi)^(n/2) / exp(5*n/2 + 35*n^2/144 + n^5/2 + 11*n^6/36)).
Equals 2^(5/4)*Pi^(5/4)*exp(137/3024 - 5*Zeta'(-5)) * Product_{n>=1} ((n^5)! / stirling(n^5)), where stirling(n^5) = sqrt(2*Pi) * n^(5*n^5 + 5/2) / exp(n^5) is the Stirling approximation of (n^5)! and Zeta'(-5) = A259070. - Vaclav Kotesovec, Apr 20 2016

A255511 Decimal expansion of a constant related to A255358.

Original entry on oeis.org

4, 1, 1, 3, 7, 4, 0, 5, 5, 2, 0, 1, 5, 3, 3, 8, 1, 2, 3, 0, 5, 2, 4, 5, 3, 3, 4, 0, 0, 9, 0, 3, 6, 8, 1, 3, 6, 3, 9, 5, 7, 6, 3, 8, 1, 5, 1, 9, 4, 7, 7, 1, 5, 8, 9, 6, 5, 8, 1, 4, 0, 4, 6, 3, 0, 8, 9, 2, 2, 4, 5, 4, 0, 6, 0, 1, 1, 4, 8, 1, 3, 0, 0, 8, 7, 7, 9, 8, 9, 6, 1, 4, 7, 9, 4, 3, 0, 0, 4, 4, 8, 2, 9, 6, 8
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Examples

			4.113740552015338123052453340090368136395763815194771589658140463089224...
		

Crossrefs

Formula

Equals limit n->infinity (Product_{k=0..n} (k^3)!) / (n^(29/40 + 3*n/2 + 3*n^2/4 + 3*n^3/2 + 3*n^4/4) * (2*Pi)^(n/2) / exp(n*(n+2)*(12 - 6*n + 7*n^2)/16)).
Equals (2*Pi)^(3/4) * exp(-11/240 - 3*Zeta'(-3)) * Product_{n>=1} ((n^3)!/stirling(n^3)), where stirling(n^3) = sqrt(2*Pi) * n^(3*n^3 + 3/2) / exp(n^3) is the Stirling approximation of (n^3)! and Zeta'(-3) = A259068. - Vaclav Kotesovec, Apr 20 2016
Showing 1-4 of 4 results.