cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A255504 Decimal expansion of a constant related to A255322.

Original entry on oeis.org

3, 0, 4, 8, 3, 3, 0, 3, 0, 6, 5, 2, 2, 3, 4, 8, 5, 6, 6, 9, 1, 1, 9, 2, 0, 4, 1, 7, 3, 3, 7, 6, 1, 3, 0, 1, 5, 8, 8, 5, 3, 1, 3, 4, 7, 5, 6, 8, 9, 0, 4, 9, 1, 8, 4, 5, 2, 5, 4, 8, 3, 6, 9, 7, 6, 8, 4, 8, 3, 4, 1, 6, 5, 3, 3, 9, 0, 8, 8, 1, 4, 5, 1, 4, 6, 6, 7, 7, 6, 7, 0, 2, 2, 1, 6, 0, 5, 1, 6, 7, 7, 1, 9, 1, 8
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Examples

			3.048330306522348566911920417337613015885313475689049184525483697684834...
		

Crossrefs

Formula

Equals limit n->infinity (Product_{k=0..n} (k^2)!) / (n^((2*n + 1)*(2*n^2 + 2*n + 3)/6) * (2*Pi)^(n/2) / exp(5*n^3/9 + n^2/2 + n)).
Equals sqrt(2*Pi) * exp(Zeta(3)/(2*Pi^2)) * Product_{n>=1} ((n^2)!/stirling(n^2)), where stirling(n^2) = sqrt(2*Pi) * n^(2*n^2+1) / exp(n^2) is the Stirling approximation of (n^2)!. - Vaclav Kotesovec, Apr 20 2016

A255360 Product_{k=0..n} (k^5)!.

Original entry on oeis.org

1, 1, 263130836933693530167218012160000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 21 2015

Keywords

Comments

The next term a(3) has 512 digits.
In general (for m>1), product_{k=0..n} (k^m)! ~ c(m) * (2*Pi)^(n/2) * n^(m*(1/4 + n/2 + B(m+1)/(m+1) + (sum_{j=1..n} j^m) )) * exp(-m*n/2 - m*n^(m+1)/(m+1)^2 - (sum_{j=1..n} j^m) + m * (sum_{j=1..m-1} 1/(j+1) * B(j+1) * binomial(m, j) * n^(m-j) * (sum_{i=0..j-1} 1/(m-i)) )), where c(m) is a constant and B(n) is the Bernoulli number A027641(n)/A027642(n).

Crossrefs

Programs

  • Mathematica
    Table[Product[(k^5)!, {k, 0, n}], {n, 0, 4}]
    Table[Product[j^(n - Ceiling[j^(1/5)] + 1), {j, 1, n^5}], {n, 0, 4}] (* Vaclav Kotesovec, Apr 25 2024 *)

Formula

a(n) ~ c * n^(80/63 + 5*n/2 - 5*n^2/12 + 25*n^4/12 + 5*n^5/2 + (5*n^6)/6) * (2*Pi)^(n/2) / exp(5*n/2 + 35*n^2/144 + n^5/2 + 11*n^6/36), where c = A255439 = 11.354954749729782312106... .
a(n) = Product_{j=1..n^5} j^(n - ceiling(j^(1/5)) + 1). - Vaclav Kotesovec, Apr 25 2024

A255438 Decimal expansion of a constant related to A255359.

Original entry on oeis.org

6, 6, 4, 4, 9, 8, 7, 9, 1, 8, 7, 0, 6, 3, 5, 4, 0, 4, 9, 4, 8, 3, 1, 1, 8, 3, 1, 6, 7, 3, 7, 8, 4, 2, 6, 6, 0, 0, 7, 5, 3, 6, 2, 6, 5, 2, 0, 0, 5, 2, 0, 1, 5, 6, 1, 3, 2, 6, 2, 9, 0, 4, 2, 8, 7, 1, 0, 3, 7, 1, 4, 7, 3, 4, 0, 3, 3, 7, 9, 5, 6, 1, 2, 9, 5, 0, 7, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Examples

			6.644987918706354049483118316737842660075362652005201561326290428710371...
		

Crossrefs

Formula

Equals limit n->infinity (Product_{k=0..n} (k^4)!) / (n^(1 + 28*n/15 + 4*n^3/3 + 2*n^4 + 4*n^5/5) * (2*Pi)^(n/2) / exp(19*n/9 + n^4/2 + 9*n^5/25)).
Equals 2*Pi*exp(-3*Zeta(5)/Pi^4) * Product_{n>=1} ((n^4)!/stirling(n^4)), where stirling(n^4) = sqrt(2*Pi) * n^(4*n^4 + 2) / exp(n^4) is the Stirling approximation of (n^4)! and Zeta(5) = A013663. - Vaclav Kotesovec, Apr 20 2016

A255511 Decimal expansion of a constant related to A255358.

Original entry on oeis.org

4, 1, 1, 3, 7, 4, 0, 5, 5, 2, 0, 1, 5, 3, 3, 8, 1, 2, 3, 0, 5, 2, 4, 5, 3, 3, 4, 0, 0, 9, 0, 3, 6, 8, 1, 3, 6, 3, 9, 5, 7, 6, 3, 8, 1, 5, 1, 9, 4, 7, 7, 1, 5, 8, 9, 6, 5, 8, 1, 4, 0, 4, 6, 3, 0, 8, 9, 2, 2, 4, 5, 4, 0, 6, 0, 1, 1, 4, 8, 1, 3, 0, 0, 8, 7, 7, 9, 8, 9, 6, 1, 4, 7, 9, 4, 3, 0, 0, 4, 4, 8, 2, 9, 6, 8
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Examples

			4.113740552015338123052453340090368136395763815194771589658140463089224...
		

Crossrefs

Formula

Equals limit n->infinity (Product_{k=0..n} (k^3)!) / (n^(29/40 + 3*n/2 + 3*n^2/4 + 3*n^3/2 + 3*n^4/4) * (2*Pi)^(n/2) / exp(n*(n+2)*(12 - 6*n + 7*n^2)/16)).
Equals (2*Pi)^(3/4) * exp(-11/240 - 3*Zeta'(-3)) * Product_{n>=1} ((n^3)!/stirling(n^3)), where stirling(n^3) = sqrt(2*Pi) * n^(3*n^3 + 3/2) / exp(n^3) is the Stirling approximation of (n^3)! and Zeta'(-3) = A259068. - Vaclav Kotesovec, Apr 20 2016
Showing 1-4 of 4 results.