A255494 Triangle read by rows: coefficients of numerator of generating functions for powers of Pell numbers.
1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 38, 130, 38, 1, 1, 105, 1106, 1106, 105, 1, 1, 280, 8575, 26544, 8575, 280, 1, 1, 729, 62475, 567203, 567203, 62475, 729, 1, 1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1, 1, 4717, 2939208, 207768576, 1736613466, 1736613466, 207768576, 2939208, 4717, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; # see A079291 1, 4, 1; # see A110272 1, 13, 13, 1; 1, 38, 130, 38, 1; 1, 105, 1106, 1106, 105, 1; 1, 280, 8575, 26544, 8575, 280, 1; 1, 729, 62475, 567203, 567203, 62475, 729, 1; 1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
Crossrefs
Programs
-
Magma
P:= func< n | Round(((1 + Sqrt(2))^n - (1 - Sqrt(2))^n)/(2*Sqrt(2))) >; function T(n,k) if k eq 0 or k eq n then return 1; else return P(n-k+1)*T(n-1,k-1) + P(k+1)*T(n-1,k); end if; return T; end function; [T(n,k): k in [0..n], n in [0..12]];
-
Mathematica
T[n_, k_]:= T[n,k]= If[k==0 || k==n, 1, Fibonacci[n-k+1, 2]*T[n-1, k-1] + Fibonacci[k+1, 2]*T[n-1, k]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 19 2021 *)
-
Sage
@CachedFunction def P(n): return lucas_number1(n, 2, -1) def T(n,k): return 1 if (k==0 or k==n) else P(n-k+1)*T(n-1, k-1) + P(k+1)*T(n-1, k) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 19 2021
Comments