cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255496 3rd diagonal of triangle in A255494.

Original entry on oeis.org

1, 38, 1106, 26544, 567203, 11179686, 207768576, 3692419776, 63361188037, 1057109514902, 17235551954894, 275697361933728, 4339725043253447, 67384965236252310, 1034147721558836220, 15711425790758327952, 236612932874975360809, 3536182524466029241958, 52494462902614684280330
Offset: 0

Views

Author

N. J. A. Sloane, Mar 06 2015

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= (12)^(n+4) -(-2)^(n+1) -2^n*LucasL[2*n+9, 2] -5^(n+4)*Fibonacci[n+5, 2] +(1/10)*Fibonacci[n+4, 2]*(Fibonacci[n+4, 2]^2 +(-1)^n);
    Table[a[n], {n, 0, 30}] (* G. C. Greubel, Sep 20 2021 *)
  • Sage
    def P(n): return lucas_number1(n, 2, -1)
    def Q(n): return lucas_number2(n, 2, -1)
    def a(n): return (12)^(n+4) - (-2)^(n+1) - 2^n*Q(2*n+9) - 5^(n+4)*P(n+5) + (1/10)*P(n+4)*(P(n+4)^2 + (-1)^n)
    [a(n) for n in (0..30)] # G. C. Greubel, Sep 20 2021

Formula

From G. C. Greubel, Sep 20 2021: (Start)
a(n) = 12*a(n-1) + P(n+1)*A255495(n), where P(n) = A000129(n).
a(n) = (12)^(n+4) - (-2)^(n+1) - 2^n*Q(2*n+9) - 5^(n+4)*P(n+5) + (1/10)*P(n+4)*(P(n+4)^2 + (-1)^n), where P(n) = A000129(n), Q(n) = A002203(n).
G.f.: (1 -6*x +83*x^2 -228*x^3 -84*x^4 -200*x^5)/((1+2*x)*(1-12*x)*(1 +2*x -x^2)*(1 -10*x -25*x^2)*(1 -12*x +4*x^2)*(1 -14*x -x^2)). (End)

Extensions

3 more terms. - R. J. Mathar, Jun 14 2015
Terms a(12) onward added by G. C. Greubel, Sep 20 2021