cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A255494 Triangle read by rows: coefficients of numerator of generating functions for powers of Pell numbers.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 38, 130, 38, 1, 1, 105, 1106, 1106, 105, 1, 1, 280, 8575, 26544, 8575, 280, 1, 1, 729, 62475, 567203, 567203, 62475, 729, 1, 1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1, 1, 4717, 2939208, 207768576, 1736613466, 1736613466, 207768576, 2939208, 4717, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 06 2015

Keywords

Comments

Note that Table 8 by Falcon should be labeled with the powers n (not r) and that the labels are off by 1. - R. J. Mathar, Jun 14 2015

Examples

			Triangle begins:
  1;
  1,    1; # see A079291
  1,    4,      1; # see A110272
  1,   13,     13,        1;
  1,   38,    130,       38,        1;
  1,  105,   1106,     1106,      105,        1;
  1,  280,   8575,    26544,     8575,      280,      1;
  1,  729,  62475,   567203,   567203,    62475,    729,    1;
  1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1;
		

Crossrefs

Programs

  • Magma
    P:= func< n | Round(((1 + Sqrt(2))^n - (1 - Sqrt(2))^n)/(2*Sqrt(2))) >;
    function T(n,k)
      if k eq 0 or k eq n then return 1;
      else return P(n-k+1)*T(n-1,k-1) + P(k+1)*T(n-1,k);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]];
    
  • Mathematica
    T[n_, k_]:= T[n,k]= If[k==0 || k==n, 1, Fibonacci[n-k+1, 2]*T[n-1, k-1] + Fibonacci[k+1, 2]*T[n-1, k]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 19 2021 *)
  • Sage
    @CachedFunction
    def P(n): return lucas_number1(n, 2, -1)
    def T(n,k): return 1 if (k==0 or k==n) else P(n-k+1)*T(n-1, k-1) + P(k+1)*T(n-1, k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 19 2021

Formula

From G. C. Greubel, Sep 19 2021: (Start)
T(n, k) = P(n-k+1)*T(n-1, k-1) + P(k+1)*T(n-1, k), where T(n, 0) = T(n, n) = 1 and P(n) = A000129(n).
T(n, k) = T(n, n-k).
T(n, 1) = A094706(n).
T(n, 2) = A255495(n-2).
T(n, 3) = A255496(n-3).
T(n, 4) = A255497(n-4).
T(n, 5) = A255498(n-5). (End)

A255498 5th diagonal of triangle in A255494.

Original entry on oeis.org

1, 280, 62475, 11179686, 1736613466, 243125885240, 31464032862802, 3828473678068060, 443307088929919375, 49283438913963499728, 5295767249826282145413, 552902424623732460251730, 56318224867097916236530640, 5615280578269206770801490160, 549533929275081475149009571700
Offset: 0

Views

Author

N. J. A. Sloane, Mar 06 2015

Keywords

Crossrefs

Programs

  • Mathematica
    P[n_]:= Fibonacci[n,2]; Q[n_]:= LucasL[n,2];
    A255497[n_]:= (1/7680)*(7680*(29)^(n+5) -192*(-5)^(n+6) -30 +Q[4*n+18] -96*5^(n+6)*Q[2*n+11] +12*(-1)^n*Q[2*n+9] +3*2^(n+10)*P[3*n+15] -640*(12)^(n+6)*P[n+6] -15*(-2)^(n+10)*P[n+5]);
    a[n_]:= a[n]= If[n<2, (280)^n, 70*a[n-1] +P[n+1]*A255497[n]];
    Table[a[n], {n, 0, 30}] (* G. C. Greubel, Sep 22 2021 *)
  • Sage
    @CachedFunction
    def P(n): return lucas_number1(n, 2, -1)
    def Q(n): return lucas_number2(n, 2, -1)
    def A255497(n): return (1/7680)*( 7680*(29)^(n+5) -192*(-5)^(n+6) -30 + Q(4*n+18) -96*5^(n+6)*Q(2*n+11) +12*(-1)^n*Q(2*n+9) +3*2^(n+10)*P(3*n+15) -640*(12)^(n+6)*P(n+6) -15*(-2)^(n+10)*P(n+5) )
    def a(n): return (280)^n if (n<2) else 70*a(n-1) + P(n+1)*A255497(n)
    [a(n) for n in (0..30)] # G. C. Greubel, Sep 20 2021

Formula

From G. C. Greubel, Sep 22 2021: (Start)
a(n) = 70*a(n-1) + A000129(n+1)*A255497(n), a(0) = 1, a(1) = 280.
a(n) = (1/222720)*(435*2^(n+7) + 2320*(-12)^(n+7) - 222720*(70)^(n+6) - 29*2^(n+6)*Q(4*n+22) + 1160*(12)^(n+7)*Q(2*n+13) + 87*(-2)^(n+8)*Q(2*n+11) +
P(5*n+25) - 2784*5^(n+6)*P(3*n+18) + 29*(-1)^n*P(3*n+15) + 7680*(29)^(n+7)*P(n + 7) + 2784*(-5)^(n+7)*P(n+6) - 174*P(n+5)), where P = A000129, Q(n) = A002203.
G.f.: (1 -96*x +11997*x^2 -596862*x^3 +15287055*x^4 -135141972*x^5 +366556867*x^6 -30606125134*x^7 - 254125754944*x^8 -657125309064*x^9 +376990806976*x^10 -2048614425760*x^11 +1171618742400*x^12 +77172576000*x^13 +29064960000*x^14)/((1-2*x)*(1+12*x)*(1-70*x)*(1 -2*x -x^2)*(1 +10*x -25*x^2)*(1 +12*x +4*x^2)*(1 +14*x -x^2)*(1 -58*x -841*x^2)*(1 -68*x +4*x^2)*(1 -70*x -25*x^2)*(1 -72*x +144*x^2)*(1 -82*x -x^2)). (End)

Extensions

Terms a(7) onward added by G. C. Greubel, Sep 22 2021
Showing 1-2 of 2 results.