cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A255501 a(n) = (n^9 + 5*n^8 + 4*n^7 - n^6 - 5*n^5 + 2*n^4)/6.

Original entry on oeis.org

0, 1, 352, 9909, 107776, 698125, 3252096, 12045817, 37679104, 103495401, 256420000, 584190541, 1241471232, 2487920149, 4741917376, 8654360625, 15207694336, 25846158097, 42644120544, 68520305701, 107506720000, 165082149981, 248581222912, 367691205289
Offset: 0

Views

Author

N. J. A. Sloane, Mar 13 2015

Keywords

Crossrefs

Programs

  • Maple
    fp:=n->(n^9+5*n^8+4*n^7-n^6-5*n^5+2*n^4)/6;
    [seq(fp(n), n=0..40)];
  • Mathematica
    Table[n^4*(n^5 +5*n^4 +4*n^3 -n^2 -5*n +2)/6, {n, 0, 30}] (* G. C. Greubel, Sep 24 2021 *)
  • PARI
    concat(0, Vec(x*(1 +342*x +6434*x^2 +24406*x^3 +24240*x^4 +5354*x^5 -242*x^6 -54*x^7 -x^8)/(1-x)^10 + O(x^100))) \\ Colin Barker, Mar 14 2015
    
  • Python
    # requires Python 3.2 or higher
    from itertools import accumulate
    A255501_list, m  = [0], [60480, -208320, 273840, -168120, 45420, -2712, -648, 62, -1, 0]
    for _ in range(10**2):
        m = list(accumulate(m))
    A255501_list.append(m[-1]) # Chai Wah Wu, Mar 14 2015
    
  • Sage
    [n^4*(n^5 +5*n^4 +4*n^3 -n^2 -5*n +2)/6 for n in (0..30)] # G. C. Greubel, Sep 24 2021

Formula

a(n) = n^4 * (n^5 + 5*n^4 + 4*n^3 - n^2 - 5*n + 2)/6.
G.f.: x*(1 +342*x +6434*x^2 +24406*x^3 +24240*x^4 +5354*x^5 -242*x^6 -54*x^7 -x^8)/(1-x)^10. - Colin Barker, Mar 14 2015
E.g.f.: (x/6)* (6 +1050*x +8856*x^2 +17562*x^3 +12741*x^4 +4059*x^5 +606*x^6 +41*x^7 +x^8)*exp(x). - G. C. Greubel, Sep 24 2021

A229740 a(n) = q^9/6+5*q^8/6+2*q^7/3-q^6/6-5*q^5/6+q^4/3 where q = n-th prime power A000961(n).

Original entry on oeis.org

1, 352, 9909, 107776, 698125, 12045817, 37679104, 103495401, 584190541, 2487920149, 15207694336, 25846158097, 68520305701, 367691205289, 766959765625, 1513188079677, 2846113596901, 5135516500321, 6803021627392, 24650159312557, 61346708983561, 93685639700269, 206700247118737, 299545983486001
Offset: 1

Views

Author

N. J. A. Sloane, Oct 05 2013

Keywords

Crossrefs

Showing 1-2 of 2 results.