cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255565 a(0) = 0; for n >= 1: if n = A255411(k) for some k, then a(n) = 2*a(k), otherwise, n = A256450(h) for some h, and a(n) = 1 + 2*a(h).

Original entry on oeis.org

0, 1, 3, 7, 2, 15, 5, 31, 11, 63, 23, 127, 6, 47, 255, 13, 14, 95, 4, 511, 27, 29, 30, 191, 9, 1023, 55, 59, 61, 383, 19, 2047, 111, 119, 123, 767, 39, 4095, 223, 239, 247, 1535, 79, 8191, 447, 479, 495, 3071, 10, 159, 16383, 895, 62, 959, 991, 6143, 21, 319, 32767, 1791, 22, 125, 1919, 1983, 126, 12287, 46, 43, 639, 65535, 254, 3583, 12
Offset: 0

Views

Author

Antti Karttunen, May 05 2015

Keywords

Comments

Because all terms of A255411 are even it means that even terms can only occur in even positions (together with some odd terms, for each one of which there is a separate infinite cycle), while terms in odd positions are all odd.

Crossrefs

Inverse: A255566.
Cf. also arrays A257503, A257505.
Related or similar permutations: A273665, A273668.

Formula

a(0) = 0; for n >= 1: if A257680(n) = 0 [i.e., n is one of the terms of A255411], then a(n) = 2*a(A257685(n)), otherwise [when n is one of the terms of A256450], a(n) = 1 + 2*a(A273662(n)).
Other identities:
For all n >= 1, A001511(a(n)) = A257679(n).
For all n >= 1, a(A001563(n)) = A000079(n-1) = 2^(n-1).
For all n >= 1, a(A000142(n)) = A083318(n-1).

Extensions

Formula changed because of the changed starting offset of A256450 - Antti Karttunen, May 30 2016