A255569 Primes whose binary representation encodes an irreducible polynomial over GF(2) and has a nonprime number of 1's.
2, 1019, 1279, 1531, 1663, 1759, 1783, 1789, 2011, 2027, 2543, 2551, 2687, 2879, 2927, 2999, 3037, 3319, 3517, 3547, 3559, 3709, 3833, 3947, 4007, 4013, 4021, 4051, 4073, 4591, 5023, 5039, 5051, 5107, 5563, 5591, 5743, 5821, 5981, 6067, 6271, 6607, 6637, 6779, 6959, 7079, 7351, 7411, 7517, 7541, 7591, 7603, 7727, 7741, 7823, 7907, 7963, 7993
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local a, i,x; if not isprime(n) then return false fi; a:= convert(n,base,2); not isprime(convert(a,`+`)) and (Irreduc(add(x^(i-1)*a[i],i=1..nops(a))) mod 2) end proc: select(filter, [2,2*j+1$j=1..10000]); # Robert Israel, May 14 2015
-
Mathematica
okQ[p_?PrimeQ] := Module[{id, pol, x}, id = IntegerDigits[p, 2] // Reverse; pol = id.x^Range[0, Length[id]-1]; IrreduciblePolynomialQ[pol, Modulus -> 2] && !PrimeQ[Count[id, 1]]]; Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Feb 09 2023 *)
-
PARI
isA014580(n) = polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV i = 0; forprime(n=2, 2^31, if(isA014580(n)&&!isprime(hammingweight(n)), i++; write("b255569.txt", i, " ", n); if(i>=10000,return(n))));