cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255569 Primes whose binary representation encodes an irreducible polynomial over GF(2) and has a nonprime number of 1's.

Original entry on oeis.org

2, 1019, 1279, 1531, 1663, 1759, 1783, 1789, 2011, 2027, 2543, 2551, 2687, 2879, 2927, 2999, 3037, 3319, 3517, 3547, 3559, 3709, 3833, 3947, 4007, 4013, 4021, 4051, 4073, 4591, 5023, 5039, 5051, 5107, 5563, 5591, 5743, 5821, 5981, 6067, 6271, 6607, 6637, 6779, 6959, 7079, 7351, 7411, 7517, 7541, 7591, 7603, 7727, 7741, 7823, 7907, 7963, 7993
Offset: 1

Views

Author

Antti Karttunen, May 14 2015 after Joerg Arndt's Nov 01 2013 comment in A091206

Keywords

Crossrefs

Intersection of A091206 and A084345.
Intersection of A014580 and A255564.

Programs

  • Maple
    filter:= proc(n)
      local a, i,x;
      if not isprime(n) then return false fi;
      a:= convert(n,base,2);
      not isprime(convert(a,`+`)) and (Irreduc(add(x^(i-1)*a[i],i=1..nops(a))) mod 2)
    end proc:
    select(filter, [2,2*j+1$j=1..10000]); # Robert Israel, May 14 2015
  • Mathematica
    okQ[p_?PrimeQ] := Module[{id, pol, x}, id = IntegerDigits[p, 2] // Reverse; pol = id.x^Range[0, Length[id]-1]; IrreduciblePolynomialQ[pol, Modulus -> 2] && !PrimeQ[Count[id, 1]]];
    Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Feb 09 2023 *)
  • PARI
    isA014580(n) = polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
    i = 0; forprime(n=2, 2^31, if(isA014580(n)&&!isprime(hammingweight(n)), i++; write("b255569.txt", i, " ", n); if(i>=10000,return(n))));