A255631 Number of n-length words on {0,1,2,3} avoiding runs of zeros of length 1 (mod 3).
1, 3, 10, 34, 114, 382, 1282, 4302, 14434, 48430, 162498, 545230, 1829410, 6138222, 20595586, 69104398, 231866082, 777980590, 2610359362, 8758542414, 29387549602, 98604086254, 330846428418, 1110089483662, 3724684796002, 12497440101678, 41932678239682
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,4).
Programs
-
Mathematica
RecurrenceTable[{a[0] == 1, a[1] == 3, a[2] == 10, a[n] == 3* a[n - 1] + 4*a[n - 3]}, a[n], {n, 0, 25}] LinearRecurrence[{3,0,4},{1,3,10},40] (* Harvey P. Dale, Aug 01 2021 *)
Formula
a(n+3) = 3*a(n+2) + 4*a(n) with n > 0, a(0) = 1, a(1) = 3, a(2) = 10.
G.f.: -(x^2+1) / (4*x^3+3*x-1). - Colin Barker, Mar 20 2015