A255636 Number A(n,k) of n-node rooted trees with a forbidden limb of length k; square array A(n,k), n>=1, k>=1, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 3, 4, 0, 1, 1, 2, 4, 7, 8, 0, 1, 1, 2, 4, 8, 15, 17, 0, 1, 1, 2, 4, 9, 18, 35, 36, 0, 1, 1, 2, 4, 9, 19, 43, 81, 79, 0, 1, 1, 2, 4, 9, 20, 46, 102, 195, 175, 0, 1, 1, 2, 4, 9, 20, 47, 110, 251, 473, 395, 0
Offset: 1
Examples
: o o o o o o o o : /(|)\ | / \ /|\ | | / \ | : o ooo o o o o o o o o o o o o : /( )\ /|\ / \ | / \ | | : o o o o o o o o o o o o o o : /|\ / \ / \ | : o o o o o o o o : A(6,2) = 8 / \ : o o Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, ... 0, 2, 3, 4, 4, 4, 4, 4, 4, 4, ... 0, 4, 7, 8, 9, 9, 9, 9, 9, 9, ... 0, 8, 15, 18, 19, 20, 20, 20, 20, 20, ... 0, 17, 35, 43, 46, 47, 48, 48, 48, 48, ... 0, 36, 81, 102, 110, 113, 114, 115, 115, 115, ... 0, 79, 195, 251, 273, 281, 284, 285, 286, 286, ... 0, 175, 473, 625, 684, 706, 714, 717, 718, 719, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..141, flattened
Crossrefs
Programs
-
Maple
with(numtheory): g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)- `if`(d=k, 1, 0)), d=divisors(j))*g(n-j, k), j=1..n)/n) end: A:= (n, k)-> g(n-1, k): seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
-
Mathematica
g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[Sum[d*(g[d - 1, k] - If[d == k, 1, 0]), {d, Divisors[j]}]*g[n - j, k], {j, 1, n}]/n]; A[n_, k_] := g[n - 1, k]; Table[Table[A[n, 1 + d - n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
Comments