cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255648 Expansion of (a(q) + a(q^2) + a(q^3) + a(q^6) - 4) / 6 in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

1, 1, 2, 1, 0, 2, 2, 1, 2, 0, 0, 2, 2, 2, 0, 1, 0, 2, 2, 0, 4, 0, 0, 2, 1, 2, 2, 2, 0, 0, 2, 1, 0, 0, 0, 2, 2, 2, 4, 0, 0, 4, 2, 0, 0, 0, 0, 2, 3, 1, 0, 2, 0, 2, 0, 2, 4, 0, 0, 0, 2, 2, 4, 1, 0, 0, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 0, 4, 2, 0, 2, 0, 0, 4, 0, 2, 0
Offset: 1

Views

Author

Michael Somos, May 06 2015

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 + 2*q^3 + q^4 + 2*q^6 + 2*q^7 + q^8 + 2*q^9 + 2*q^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ { 1, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, -1, 0}[[Mod[ d, 18, 1]]], { d, Divisors[ n]}]];
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [ 0, 1, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, -1][d%18 + 1]))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, 2, p%6==1, e+1, 1-e%2)))};

Formula

Expansion of (b(q^2)^2 / b(q) + b(q^6)^2 / b(q^3) - 2) / 3 in powers of q where b() is a cubic AGM theta function.
Expansion of (psi(q)^3 / psi(q^3) + psi(q^3)^3 / psi(q^9) - 2) / 3 in powers of q where psi() is a Ramanujan theta function.
Moebius transform is period 18 sequence [ 1, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 2 if e>1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
G.f.: Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(2*k))^2 + (x^(3*k) + x^(9*k)) / (1 + x^(6*k))^2.
a(2*n) = a(n). a(3*n) = 2 * A035178(n). a(3*n + 1) = A033687(n). a(6*n + 5) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Dec 22 2023