A255648 Expansion of (a(q) + a(q^2) + a(q^3) + a(q^6) - 4) / 6 in powers of q where a() is a cubic AGM theta function.
1, 1, 2, 1, 0, 2, 2, 1, 2, 0, 0, 2, 2, 2, 0, 1, 0, 2, 2, 0, 4, 0, 0, 2, 1, 2, 2, 2, 0, 0, 2, 1, 0, 0, 0, 2, 2, 2, 4, 0, 0, 4, 2, 0, 0, 0, 0, 2, 3, 1, 0, 2, 0, 2, 0, 2, 4, 0, 0, 0, 2, 2, 4, 1, 0, 0, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 0, 4, 2, 0, 2, 0, 0, 4, 0, 2, 0
Offset: 1
Examples
G.f. = q + q^2 + 2*q^3 + q^4 + 2*q^6 + 2*q^7 + q^8 + 2*q^9 + 2*q^12 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Crossrefs
Programs
-
Mathematica
a[ n_] := If[ n < 1, 0, Sum[ { 1, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, -1, 0}[[Mod[ d, 18, 1]]], { d, Divisors[ n]}]];
-
PARI
{a(n) = if( n<1, 0, sumdiv(n, d, [ 0, 1, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, -1][d%18 + 1]))};
-
PARI
{a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, 2, p%6==1, e+1, 1-e%2)))};
Formula
Expansion of (b(q^2)^2 / b(q) + b(q^6)^2 / b(q^3) - 2) / 3 in powers of q where b() is a cubic AGM theta function.
Expansion of (psi(q)^3 / psi(q^3) + psi(q^3)^3 / psi(q^9) - 2) / 3 in powers of q where psi() is a Ramanujan theta function.
Moebius transform is period 18 sequence [ 1, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 2 if e>1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
G.f.: Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(2*k))^2 + (x^(3*k) + x^(9*k)) / (1 + x^(6*k))^2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Dec 22 2023
Comments