cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A255656 Number of length n+4 0..3 arrays with at most two downsteps in every 4 consecutive neighbor pairs.

Original entry on oeis.org

968, 3692, 14192, 54560, 209412, 803246, 3083292, 11835664, 45429680, 174365744, 669261344, 2568836929, 9859943512, 37845226102, 145260624176, 557551963747, 2140043779888, 8214097736920, 31528047115872, 121013635650740
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2015

Keywords

Comments

Column 4 of A255660

Examples

			Some solutions for n=4
..3....2....1....1....2....0....2....1....0....3....3....1....1....3....2....2
..0....1....3....2....1....3....2....3....2....0....1....3....0....0....2....1
..1....2....0....2....3....1....1....3....0....0....1....3....1....0....0....1
..1....2....2....1....3....1....3....1....1....1....2....1....1....0....1....3
..2....0....3....3....0....1....0....1....3....1....3....2....2....0....3....0
..2....3....1....3....2....2....3....1....3....1....3....1....2....1....1....0
..0....3....1....2....1....1....3....2....3....0....1....2....2....2....0....3
..0....1....2....0....3....1....0....3....0....0....1....1....1....3....1....2
		

Crossrefs

Formula

Empirical: a(n) = 4*a(n-1) -4*a(n-3) +15*a(n-4) -24*a(n-5) -68*a(n-6) +136*a(n-7) -81*a(n-8) +40*a(n-9) -10*a(n-10) +4*a(n-11) -a(n-12)

A255657 Number of length n+5 0..3 arrays with at most two downsteps in every 5 consecutive neighbor pairs.

Original entry on oeis.org

3340, 11752, 42653, 155144, 564600, 2036844, 7323894, 26452984, 95690028, 345980784, 1250385422, 4516046380, 16313317592, 58952879320, 213036643465, 769783313248, 2781411265212, 10049660711008, 36312457046956, 131210437887132, 474105380419912, 1713085295392596
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2015

Keywords

Examples

			Some solutions for n=4:
..0....3....1....1....0....0....2....3....2....2....0....1....2....1....1....1
..1....0....2....0....3....0....2....0....0....2....2....0....0....2....0....2
..3....2....2....1....0....2....3....0....1....0....0....0....0....2....1....0
..0....2....0....1....0....1....1....2....1....0....2....1....3....3....0....1
..2....3....1....1....2....2....2....2....0....3....0....3....0....1....1....3
..2....2....1....2....1....0....2....0....1....3....3....0....3....2....1....1
..1....0....0....1....2....3....2....0....2....0....3....2....3....2....3....2
..2....3....2....2....1....3....2....2....1....2....1....3....0....1....1....3
..0....3....0....1....2....1....0....2....3....0....2....1....3....2....2....2
		

Crossrefs

Column 5 of A255660.

Formula

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +20*a(n-3) -34*a(n-4) +148*a(n-5) -266*a(n-6) +192*a(n-7) -622*a(n-8) +1120*a(n-9) -3788*a(n-10) +6836*a(n-11) -5078*a(n-12) +3368*a(n-13) -1500*a(n-14) +1172*a(n-15) -603*a(n-16) +152*a(n-17) -376*a(n-18) +272*a(n-19) -156*a(n-20) +68*a(n-21) -10*a(n-22) +a(n-24).

A255658 Number of length n+6 0..3 arrays with at most two downsteps in every 6 consecutive neighbor pairs.

Original entry on oeis.org

10320, 33042, 112196, 385738, 1324872, 4542671, 15269184, 50963540, 171784096, 583245999, 1978627688, 6707590534, 22709921860, 76722468914, 259180579024, 877068284264, 2969801621944, 10051964251804, 34016225117956
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2015

Keywords

Comments

Column 6 of A255660

Examples

			Some solutions for n=3
..0....0....1....3....0....1....3....2....2....2....0....3....0....2....0....0
..2....1....0....0....3....1....0....3....3....2....0....2....0....0....2....1
..2....1....2....2....0....0....2....1....3....3....1....3....0....2....3....0
..3....0....3....2....0....2....3....3....3....2....1....1....0....2....2....0
..3....1....3....3....1....0....0....3....0....1....1....2....0....0....0....0
..0....0....1....0....3....0....2....0....2....1....3....2....0....3....0....2
..3....0....1....0....3....2....2....3....2....2....2....3....2....3....1....3
..1....2....2....3....3....3....2....3....2....2....0....3....3....2....1....2
..2....2....1....2....2....2....1....3....0....3....3....2....1....2....1....2
		

Crossrefs

Formula

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +20*a(n-3) -34*a(n-4) +24*a(n-5) +230*a(n-6) -552*a(n-7) +447*a(n-8) -4060*a(n-9) +6908*a(n-10) -2648*a(n-11) -10346*a(n-12) +26292*a(n-13) -21776*a(n-14) +185776*a(n-15) -406128*a(n-16) +326996*a(n-17) -196764*a(n-18) +82488*a(n-19) -13045*a(n-20) -115472*a(n-21) +108636*a(n-22) -29312*a(n-23) +73724*a(n-24) -12420*a(n-25) -41050*a(n-26) +38840*a(n-27) -21680*a(n-28) +3232*a(n-29) -12984*a(n-30) +13080*a(n-31) -4064*a(n-32) +320*a(n-34) +64*a(n-35)

A255659 Number of length n+7 0..3 arrays with at most two downsteps in every 7 consecutive neighbor pairs.

Original entry on oeis.org

28722, 83752, 265430, 864924, 2816673, 9169016, 29577432, 92530816, 286454024, 900260308, 2873064972, 9187712072, 29298245258, 93413733472, 297026093532, 940176646792, 2973476370798, 9435365703664, 30019424281120, 95485615550472
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2015

Keywords

Comments

Column 7 of A255660

Examples

			Some solutions for n=2
..0....0....2....0....3....3....0....0....2....3....1....0....2....2....1....0
..0....1....3....0....3....0....1....3....2....1....2....0....0....0....3....2
..0....2....0....2....3....2....0....1....3....2....2....3....2....0....3....3
..3....1....2....2....0....2....0....1....3....3....2....0....2....2....2....3
..1....1....3....2....0....1....0....0....3....1....2....2....3....1....2....3
..1....3....0....0....1....1....0....3....0....1....2....2....3....2....1....1
..3....3....2....2....3....2....0....3....2....2....0....0....3....3....2....1
..3....0....3....2....0....3....1....3....1....3....3....0....1....3....2....0
..2....3....3....3....0....2....0....3....1....3....1....0....0....1....3....3
		

Crossrefs

Formula

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) +30*a(n-4) -72*a(n-5) +58*a(n-6) +872*a(n-7) -2121*a(n-8) +1748*a(n-9) -492*a(n-10) -13640*a(n-11) +26816*a(n-12) -13536*a(n-13) -232948*a(n-14) +493540*a(n-15) -280547*a(n-16) -33840*a(n-17) +1271000*a(n-18) -2599020*a(n-19) +2012477*a(n-20) +14744048*a(n-21) -38149820*a(n-22) +32418288*a(n-23) -9358211*a(n-24) -17204016*a(n-25) +20480444*a(n-26) -6417756*a(n-27) -25522136*a(n-28) +31264272*a(n-29) -10417774*a(n-30) -104220*a(n-31) +17617480*a(n-32) -9721216*a(n-33) -6417184*a(n-34) +19052720*a(n-35) -11470236*a(n-36) -3073784*a(n-37) +2563240*a(n-38) -4701200*a(n-39) +5023520*a(n-40) -1940960*a(n-41) -2778800*a(n-42) +3580160*a(n-43) -1109600*a(n-44) +16000*a(n-45) +88000*a(n-46) +22400*a(n-47) +10000*a(n-48)

A255661 Number of length n+1 0..3 arrays with at most two downsteps in every n consecutive neighbor pairs.

Original entry on oeis.org

16, 64, 255, 968, 3340, 10320, 28722, 72920, 171106, 375388, 777452, 1532064, 2891360, 5253680, 9231663, 15745452, 26148180, 42392440, 67248205, 104584680, 159730860, 239932160, 354923400, 517641696, 745106454, 1059497716, 1489468594
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2015

Keywords

Comments

Row 1 of A255660.

Examples

			Some solutions for n=4:
..0....2....1....2....1....1....1....3....2....3....0....0....0....3....1....1
..2....3....1....2....2....3....1....0....0....0....1....3....2....3....2....3
..1....0....2....2....0....0....3....0....3....0....1....0....0....0....1....0
..3....3....3....0....3....0....0....0....1....1....3....3....0....3....1....2
..3....0....2....3....0....0....0....3....1....0....3....1....2....3....2....0
		

Crossrefs

Cf. A255660.

Formula

Empirical: a(n) = (1/39916800)*n^11 + (1/518400)*n^10 + (1/15120)*n^9 + (137/120960)*n^8 + (12461/1209600)*n^7 + (8251/172800)*n^6 + (56011/362880)*n^5 + (14791/25920)*n^4 + (278149/151200)*n^3 + (8149/2100)*n^2 + (2539/462)*n + 4.
Empirical g.f.: x*(16 - 128*x + 543*x^2 - 1388*x^3 + 2394*x^4 - 2964*x^5 + 2683*x^6 - 1760*x^7 + 814*x^8 - 252*x^9 + 47*x^10 - 4*x^11) / (1 - x)^12. - Colin Barker, Jan 21 2018

A255662 Number of length n+2 0..3 arrays with at most two downsteps in every n consecutive neighbor pairs.

Original entry on oeis.org

64, 256, 1016, 3692, 11752, 33042, 83752, 195020, 423460, 867347, 1690744, 3158528, 5686080, 9908365, 16774260, 27673310, 44603624, 70391386, 108974472, 165764956, 248107880, 365856580, 532088128, 763986096, 1083921900, 1520770469
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2015

Keywords

Comments

Row 2 of A255660.

Examples

			Some solutions for n=4:
..2....1....3....0....1....3....3....2....3....0....2....2....1....1....2....3
..3....2....1....0....3....0....3....3....2....0....1....1....3....1....1....0
..3....3....1....1....2....2....0....2....2....3....3....2....1....2....1....3
..1....2....3....3....1....3....3....2....3....1....3....1....3....2....2....0
..1....0....1....0....1....2....2....3....0....1....3....3....1....3....1....1
..0....3....2....0....1....3....3....0....1....2....3....1....3....3....2....2
		

Crossrefs

Cf. A255660.

Formula

Empirical: a(n) = (1/39916800)*n^11 + (1/453600)*n^10 + (1/11520)*n^9 + (11/6048)*n^8 + (28751/1209600)*n^7 + (4303/21600)*n^6 + (789461/725760)*n^5 + (40955/18144)*n^4 + (164359/43200)*n^3 + (110513/6300)*n^2 + (44789/1540)*n + 10.
Empirical g.f.: x*(64 - 512*x + 2168*x^2 - 5684*x^3 + 9864*x^4 - 11798*x^5 + 9944*x^6 - 5948*x^7 + 2500*x^8 - 711*x^9 + 124*x^10 - 10*x^11) / (1 - x)^12. - Colin Barker, Jan 21 2018

A255663 Number of length n+3 0..3 arrays with at most two downsteps in every n consecutive neighbor pairs.

Original entry on oeis.org

256, 1024, 4048, 14192, 42653, 112196, 265430, 577464, 1174730, 2262312, 4162792, 7370432, 12625472, 21014456, 34103820, 54115508, 84155145, 128505312, 192998760, 285488992, 416438559, 599648684, 853157474, 1200338032, 1671232268
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2015

Keywords

Comments

Row 3 of A255660

Examples

			Some solutions for n=4
..3....3....0....0....1....1....2....0....2....3....1....0....3....1....3....3
..1....1....0....0....0....0....2....1....2....2....2....0....0....0....3....2
..3....2....3....1....3....1....2....3....0....2....1....2....3....1....0....0
..0....0....2....1....3....2....2....3....0....1....1....1....3....1....0....0
..0....2....2....3....3....1....2....3....3....3....0....3....1....3....1....2
..0....3....2....1....2....1....0....1....1....3....1....3....0....1....1....2
..3....1....2....3....3....2....1....2....0....1....2....3....1....1....2....2
		

Crossrefs

Formula

Empirical: a(n) = (1/39916800)*n^11 + (1/403200)*n^10 + (1/9072)*n^9 + (109/40320)*n^8 + (63421/1209600)*n^7 + (39319/57600)*n^6 + (1888387/362880)*n^5 + (24707/2240)*n^4 + (4099087/453600)*n^3 + (33487/525)*n^2 + (950843/6930)*n + 28 for n>1

A255664 Number of length n+4 0..3 arrays with at most two downsteps in every n consecutive neighbor pairs.

Original entry on oeis.org

1024, 4096, 16128, 54560, 155144, 385738, 864924, 1788660, 3467296, 6376160, 11223728, 19042353, 31307660, 50094036, 78275176, 119780409, 179919544, 265791268, 386792720, 555250782, 787198896, 1103326862, 1530135124
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2015

Keywords

Comments

Row 4 of A255660

Examples

			Some solutions for n=4
..2....2....0....1....2....1....3....2....3....3....2....3....0....1....0....3
..2....3....1....0....1....0....0....0....1....2....1....1....0....3....2....3
..2....0....0....1....0....0....3....1....1....0....0....2....3....1....3....3
..3....1....2....2....2....2....0....0....1....0....0....1....0....0....2....2
..3....0....2....1....3....1....3....0....2....1....1....2....0....0....1....0
..0....1....2....0....0....3....0....2....1....2....0....3....0....3....2....1
..3....1....2....0....3....0....1....3....0....0....2....2....1....1....3....3
..1....1....3....3....2....0....1....2....3....1....2....2....0....1....0....2
		

Crossrefs

Formula

Empirical: a(n) = (1/39916800)*n^11 + (1/362880)*n^10 + (11/80640)*n^9 + (461/120960)*n^8 + (141551/1209600)*n^7 + (36127/17280)*n^6 + (14049449/725760)*n^5 + (18041057/362880)*n^4 + (35402863/302400)*n^3 + (1423187/10080)*n^2 + (1020871/3080)*n + 163 for n>2

A255665 Number of length n+5 0..3 arrays with at most two downsteps in every n consecutive neighbor pairs.

Original entry on oeis.org

4096, 16384, 64257, 209412, 564600, 1324872, 2816673, 5555336, 10323148, 18270784, 31047630, 50967648, 81218758, 126125244, 191474454, 284921080, 416484596, 599158024, 849649115, 1189278300, 1645061412, 2251009232
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2015

Keywords

Comments

Row 5 of A255660.

Examples

			Some solutions for n=3
..1....0....2....2....3....2....2....0....2....2....1....1....1....1....2....2
..2....1....2....0....1....2....3....0....2....2....1....0....0....2....3....1
..1....1....1....1....0....0....2....3....3....0....0....1....3....2....2....1
..3....2....2....1....0....3....3....0....2....3....1....1....3....3....3....3
..0....0....2....1....3....1....3....3....0....2....1....2....1....0....2....3
..0....0....0....0....1....1....1....1....3....0....3....0....0....2....2....2
..3....3....3....2....0....0....2....1....2....1....1....3....0....2....3....2
..1....3....2....1....3....1....2....1....1....3....2....0....0....2....0....1
		

Crossrefs

Cf. A255660.

Formula

Empirical: a(n) = (1/39916800)*n^11 + (11/3628800)*n^10 + (1/6048)*n^9 + (125/24192)*n^8 + (315821/1209600)*n^7 + (994223/172800)*n^6 + (4372667/72576)*n^5 + (6881047/36288)*n^4 + (208795429/151200)*n^3 - (13877413/12600)*n^2 - (30361/231)*n + 712 for n>3.

A255666 Number of length n+6 0..3 arrays with at most two downsteps in every n consecutive neighbor pairs.

Original entry on oeis.org

16384, 65536, 256012, 803246, 2036844, 4542671, 9169016, 17232696, 30665992, 52227111, 85761364, 136522338, 211563872, 320215410, 474655320, 690599060, 988121664, 1392636938, 1936059024, 2658175636, 3608266324, 4847003609
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2015

Keywords

Comments

Row 6 of A255660

Examples

			Some solutions for n=2
..1....2....0....0....1....2....1....0....0....2....3....3....2....2....2....3
..0....3....3....1....1....3....1....0....2....0....2....1....3....3....3....3
..3....3....2....1....0....2....0....3....3....2....2....1....0....1....1....0
..3....0....0....3....0....3....2....0....3....2....3....1....0....3....3....3
..1....2....0....0....2....1....2....3....1....1....1....2....2....1....0....2
..0....3....0....1....0....3....2....0....2....3....2....3....1....3....3....3
..2....2....0....1....2....1....1....1....3....2....1....1....0....1....3....0
..0....1....0....1....3....2....1....1....0....3....0....1....0....2....0....0
		

Crossrefs

Formula

Empirical: a(n) = (1/39916800)*n^11 + (1/302400)*n^10 + (143/725760)*n^9 + (137/20160)*n^8 + (686191/1209600)*n^7 + (68821/4800)*n^6 + (118924709/725760)*n^5 + (37326349/60480)*n^4 + (9666601859/907200)*n^3 - (165778309/8400)*n^2 + (24588142/3465)*n - 6396 for n>4
Showing 1-10 of 11 results. Next