A255670 Number of the column of the Wythoff array (A035513) that contains L(n), where L = A000201, the lower Wythoff sequence.
1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 7, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 9, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 7, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 7, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3
Offset: 1
Examples
Corner of the Wythoff array: 1 2 3 5 8 13 4 7 11 18 29 47 6 10 16 26 42 68 9 15 24 39 63 102 L = (1,3,4,6,8,9,11,...); U = (2,5,7,10,13,15,18,...), so that this sequence = (1,3,1,1,5,...) and A255671 = (2,4,2,2,6,...).
Links
- Nicholas John Bizzell-Browning, LIE scales: Composing with scales of linear intervallic expansion, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 39.
Programs
-
Mathematica
z = 13; r = GoldenRatio; f[1] = {1}; f[2] = {1, 2}; f[n_] := f[n] = Join[f[n - 1], Most[f[n - 2]], {n}]; f[z]; g[n_] := g[n] = f[z][[n]]; Table[g[n], {n, 1, 100}] (* A035612 *) Table[g[Floor[n*r]], {n, 1, (1/r) Length[f[z]]}] (* A255670 *) Table[g[Floor[n*r^2]], {n, 1, (1/r^2) Length[f[z]]}] (* A255671 *)
Comments