cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255670 Number of the column of the Wythoff array (A035513) that contains L(n), where L = A000201, the lower Wythoff sequence.

Original entry on oeis.org

1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 7, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 9, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 7, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 7, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 5, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2015

Keywords

Comments

All the terms are odd, and every odd positive integer occurs infinitely many times.

Examples

			Corner of the Wythoff array:
  1   2   3   5   8   13
  4   7   11  18  29  47
  6   10  16  26  42  68
  9   15  24  39  63  102
L = (1,3,4,6,8,9,11,...); U = (2,5,7,10,13,15,18,...), so that
this sequence = (1,3,1,1,5,...) and A255671 = (2,4,2,2,6,...).
		

Crossrefs

Programs

  • Mathematica
    z = 13; r = GoldenRatio; f[1] = {1}; f[2] = {1, 2};
    f[n_] := f[n] = Join[f[n - 1], Most[f[n - 2]], {n}]; f[z];
    g[n_] := g[n] = f[z][[n]]; Table[g[n], {n, 1, 100}]  (* A035612 *)
    Table[g[Floor[n*r]], {n, 1, (1/r) Length[f[z]]}]     (* A255670 *)
    Table[g[Floor[n*r^2]], {n, 1, (1/r^2) Length[f[z]]}] (* A255671 *)

Formula

a(n) = A255671(n) - 1 = A035612(A000201(n)).
a(n) = 1 if and only if n = L(j) for some j; otherwise, n = U(k) for some k.