cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255677 Least integer k > 1 such that pi(k)^2 + pi(k*n)^2 is a square, where pi(.) is the prime-counting function given by A000720.

Original entry on oeis.org

5, 30, 8458, 18, 252, 25, 1407, 476, 9098, 108, 1814, 1868, 153, 1005, 67, 26532, 1592, 200, 963, 99, 833, 1356, 3869, 981, 531, 127, 4961, 366, 1192, 1873, 41308, 409, 21756, 194664, 180, 27071, 7433, 160179, 2076, 544, 211, 10639, 19571, 33483, 603, 68380, 1517, 47529, 35923
Offset: 2

Views

Author

Zhi-Wei Sun, Jul 10 2015

Keywords

Comments

Conjecture: Each positive rational number r < 1 can be written as m/n with 1 < m < n such that pi(m)^2 + pi(n)^2 is a square. Also, any rational number r > 1 can be written as m/n with m > n > 1 such that pi(m)^2 - pi(n)^2 is a square.
For example, 23/24 = 19947716/20815008 with pi(19947716)^2 + pi(20815008)^2 = 1267497^2 + 1319004^2 = 1829295^2, and 7/3 = 26964/11556 with pi(26964)^2 - pi(11556)^2 = 2958^2 - 1392^2 = 2610^2.

Examples

			a(2) = 5 since pi(5)^2 + pi(5*2)^2 = 3^2 + 4^2 = 5^2.
a(3) = 30 since pi(30)^2 + pi(30*3)^2 = 10^2 + 24^2 = 26^2.
a(68) = 6260592 since pi(6260592)^2 + pi(6260592*68)^2 = 429505^2 + 22632876^2 = 22636951^2.
a(95) = 7955506 since pi(7955506)^2 + pi(7955506*95)^2 = 536984^2 + 38985687^2 = 38989385^2.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    Do[k=1;Label[aa];k=k+1;If[SQ[PrimePi[k]^2+PrimePi[k*n]^2],Goto[bb],Goto[aa]];Label[bb];Print[n," ",k];Continue,{n,2,50}]
  • PARI
    a(n)={ k=2; while(!issquare(primepi(k)^2 + primepi(k*n)^2),k++); return(k);}
    main(size)={ v=vector(size); for(i=2, size+1, v[i-1]=a(i)); return(v);} /* Anders Hellström, Jul 11 2015 */