A255677 Least integer k > 1 such that pi(k)^2 + pi(k*n)^2 is a square, where pi(.) is the prime-counting function given by A000720.
5, 30, 8458, 18, 252, 25, 1407, 476, 9098, 108, 1814, 1868, 153, 1005, 67, 26532, 1592, 200, 963, 99, 833, 1356, 3869, 981, 531, 127, 4961, 366, 1192, 1873, 41308, 409, 21756, 194664, 180, 27071, 7433, 160179, 2076, 544, 211, 10639, 19571, 33483, 603, 68380, 1517, 47529, 35923
Offset: 2
Keywords
Examples
a(2) = 5 since pi(5)^2 + pi(5*2)^2 = 3^2 + 4^2 = 5^2. a(3) = 30 since pi(30)^2 + pi(30*3)^2 = 10^2 + 24^2 = 26^2. a(68) = 6260592 since pi(6260592)^2 + pi(6260592*68)^2 = 429505^2 + 22632876^2 = 22636951^2. a(95) = 7955506 since pi(7955506)^2 + pi(7955506*95)^2 = 536984^2 + 38985687^2 = 38989385^2.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..100
- Zhi-Wei Sun, Checking the conjecture for r = a/b, b/a with 1 <= a < b <= 50
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
SQ[n_]:=IntegerQ[Sqrt[n]] Do[k=1;Label[aa];k=k+1;If[SQ[PrimePi[k]^2+PrimePi[k*n]^2],Goto[bb],Goto[aa]];Label[bb];Print[n," ",k];Continue,{n,2,50}]
-
PARI
a(n)={ k=2; while(!issquare(primepi(k)^2 + primepi(k*n)^2),k++); return(k);} main(size)={ v=vector(size); for(i=2, size+1, v[i-1]=a(i)); return(v);} /* Anders Hellström, Jul 11 2015 */
Comments