cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255679 Least number k such that pi(k*n)^2 = pi(i*n)^2 + pi(j*n)^2 for some 0 < i < j < k.

Original entry on oeis.org

4, 6, 4, 12, 6, 17, 17, 6, 11, 6, 13, 14, 4, 10, 31, 35, 10, 8, 20, 20, 70, 20, 34, 23, 47, 17, 44, 25, 5, 46, 4, 26, 53, 13, 29, 33, 35, 45, 65, 10, 18, 64, 117, 21, 77, 19, 71, 101, 44, 80, 28, 93, 36, 183, 100, 98, 55, 4, 53, 81, 31, 120, 58, 40, 53, 56, 34, 49, 181, 218
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 11 2015

Keywords

Comments

Conjecture: a(n) exists for any n > 0. In other words, for each n = 1,2,3,... the sequence pi(k*n) (k = 1,2,3,...) contains a Pythagorean triple.

Examples

			a(1) = 4 since pi(4*1)^2 = 2^2 = pi(1*1)^2 + pi(3*1)^2.
a(21) = 70 since pi(70*21)^2 = pi(1470)^2 = 232^2 = 160^2 + 168^2 = pi(45*21)^2 + pi(48*21)^2.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    Do[k=0;Label[bb];k=k+1;Do[If[PrimePi[k*n]^2==PrimePi[i*n]^2+PrimePi[j*n]^2,Goto[aa],Goto[cc]];Label[cc];Continue,{j,1,k-1},{i,1,j-1}];Goto[bb];
    Label[aa];Print[n," ",k];Continue,{n,1,70}]
  • PARI
    is_ok(n,k)={ r=0; for(i=1,k-1, for(j=i+1, k-1, if(primepi(k*n)^2 == primepi(i*n)^2 + primepi(j*n)^2,r=1;break(2)) )); return(r);}
    a(n)={ k=0; while(!is_ok(n,k), k++); return(k);}
    main(size)={ v=vector(size); i=1; m=1; while(i<=size, v[i]=a(i);i++); return(v);} /* Anders Hellström, Jul 11 2015 */