cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A255636 Number A(n,k) of n-node rooted trees with a forbidden limb of length k; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 3, 4, 0, 1, 1, 2, 4, 7, 8, 0, 1, 1, 2, 4, 8, 15, 17, 0, 1, 1, 2, 4, 9, 18, 35, 36, 0, 1, 1, 2, 4, 9, 19, 43, 81, 79, 0, 1, 1, 2, 4, 9, 20, 46, 102, 195, 175, 0, 1, 1, 2, 4, 9, 20, 47, 110, 251, 473, 395, 0
Offset: 1

Views

Author

Alois P. Heinz, Feb 28 2015

Keywords

Comments

Any rootward k-node path starting at a leaf contains the root or a branching node.

Examples

			:    o      o        o      o    o       o      o    o
:  /(|)\    |       / \    /|\   |       |     / \   |
: o ooo o   o      o   o  o o o  o       o    o   o  o
:         /( )\   /|\    / \     |      / \   |      |
:        o o o o o o o  o   o    o     o   o  o      o
:                               /|\   / \    / \     |
:                              o o o o   o  o   o    o
: A(6,2) = 8                                        / \
:                                                  o   o
Square array A(n,k) begins:
  1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
  0,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
  0,   1,   2,   2,   2,   2,   2,   2,   2,   2, ...
  0,   2,   3,   4,   4,   4,   4,   4,   4,   4, ...
  0,   4,   7,   8,   9,   9,   9,   9,   9,   9, ...
  0,   8,  15,  18,  19,  20,  20,  20,  20,  20, ...
  0,  17,  35,  43,  46,  47,  48,  48,  48,  48, ...
  0,  36,  81, 102, 110, 113, 114, 115, 115, 115, ...
  0,  79, 195, 251, 273, 281, 284, 285, 286, 286, ...
  0, 175, 473, 625, 684, 706, 714, 717, 718, 719, ...
		

Crossrefs

Main diagonal gives A000081.
Cf. A255704.

Programs

  • Maple
    with(numtheory):
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
          `if`(d=k, 1, 0)), d=divisors(j))*g(n-j, k), j=1..n)/n)
        end:
    A:= (n, k)-> g(n-1, k):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
  • Mathematica
    g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[Sum[d*(g[d - 1, k] - If[d == k, 1, 0]), {d, Divisors[j]}]*g[n - j, k], {j, 1, n}]/n]; A[n_, k_] := g[n - 1, k]; Table[Table[A[n, 1 + d - n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

A255705 Number of 2n+1-node rooted trees in which the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root equals n+1.

Original entry on oeis.org

1, 1, 3, 8, 22, 60, 167, 465, 1306, 3681, 10422, 29597, 84313, 240757, 689035, 1975753, 5675145, 16326198, 47032200, 135658367, 391733593, 1132357784, 3276330780, 9487885056, 27497891241, 79753806451, 231474005120, 672250119756, 1953523496677, 5680002466125
Offset: 0

Views

Author

Alois P. Heinz, Mar 02 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
          `if`(d=k, 1, 0)), d=divisors(j))*g(n-j, k), j=1..n)/n)
        end:
    a:= a-> g(2*n, n+1) -`if`(n=0, 0, g(2*n, n)):
    seq(a(n), n=0..40);
  • Mathematica
    g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*(g[# - 1, k] - If[# == k, 1, 0]) &]*g[n - j, k], {j, 1, n}]/n];
    a[n_] :=  g[2n, n+1] - If[n == 0, 0, g[2n, n]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)

Formula

a(n) = A255704(2*n+1,n+1).
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.955765285651994974714817524... and c = 0.70755335886284109851526791506579... . - Vaclav Kotesovec, Feb 28 2016
a(n) = A318754(2n+2,n+1) = A318758(2n+2,n+1). - Alois P. Heinz, Sep 02 2018

A318899 Number of n-node rooted trees in which three equals the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root.

Original entry on oeis.org

1, 1, 3, 7, 18, 45, 116, 298, 776, 2025, 5322, 14030, 37155, 98685, 262961, 702497, 1881475, 5050140, 13583622, 36605565, 98821445, 267220361, 723704046, 1962830775, 5330900916, 14497096134, 39472561082, 107601053713, 293643574776, 802203904616, 2193758306687
Offset: 3

Views

Author

Alois P. Heinz, Sep 05 2018

Keywords

Crossrefs

Column k=3 of A255704.

Programs

  • Maple
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
          `if`(d=k, 1, 0)), d=numtheory[divisors](j))*g(n-j, k), j=1..n)/n)
        end:
    a:= n-> (k-> g(n-1, k) -g(n-1, k-1))(3):
    seq(a(n), n=3..35);

A318900 Number of n-node rooted trees in which four equals the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root.

Original entry on oeis.org

1, 1, 3, 8, 21, 56, 152, 413, 1131, 3113, 8603, 23861, 66386, 185190, 517807, 1450836, 4072474, 11450141, 32240466, 90901507, 256605905, 725176409, 2051455548, 5808817638, 16462274560, 46691893949, 132531324274, 376443234567, 1069953746735, 3042969864371
Offset: 4

Views

Author

Alois P. Heinz, Sep 05 2018

Keywords

Crossrefs

Column k=4 of A255704.

Programs

  • Maple
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
          `if`(d=k, 1, 0)), d=numtheory[divisors](j))*g(n-j, k), j=1..n)/n)
        end:
    a:= n-> (k-> g(n-1, k) -g(n-1, k-1))(4):
    seq(a(n), n=4..35);

A318901 Number of n-node rooted trees in which five equals the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root.

Original entry on oeis.org

1, 1, 3, 8, 22, 59, 163, 450, 1254, 3505, 9846, 27740, 78412, 222175, 630993, 1795524, 5118371, 14613211, 41780583, 119605948, 342793785, 983487162, 2824375723, 8118198640, 23353430828, 67230869761, 193682427149, 558333769713, 1610500116245, 4648080322122
Offset: 5

Views

Author

Alois P. Heinz, Sep 05 2018

Keywords

Crossrefs

Column k=5 of A255704.

Programs

  • Maple
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
          `if`(d=k, 1, 0)), d=numtheory[divisors](j))*g(n-j, k), j=1..n)/n)
        end:
    a:= n-> (k-> g(n-1, k) -g(n-1, k-1))(5):
    seq(a(n), n=5..35);

A318902 Number of n-node rooted trees in which six equals the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root.

Original entry on oeis.org

1, 1, 3, 8, 22, 60, 166, 461, 1291, 3629, 10246, 29020, 82448, 234818, 670288, 1917054, 5492422, 15760308, 45286760, 130293687, 375293797, 1082109082, 3123088057, 9021467714, 26080762653, 75454838291, 218451043430, 632849337956, 1834453919208, 5320549626803
Offset: 6

Views

Author

Alois P. Heinz, Sep 05 2018

Keywords

Crossrefs

Column k=6 of A255704.

Programs

  • Maple
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
          `if`(d=k, 1, 0)), d=numtheory[divisors](j))*g(n-j, k), j=1..n)/n)
        end:
    a:= n-> (k-> g(n-1, k) -g(n-1, k-1))(6):
    seq(a(n), n=6..36);

A318903 Number of n-node rooted trees in which seven equals the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root.

Original entry on oeis.org

1, 1, 3, 8, 22, 60, 167, 464, 1302, 3666, 10370, 29421, 83736, 238891, 683088, 1956968, 5616281, 16142818, 46463814, 133903792, 386336345, 1115804329, 3225691950, 9333321576, 27027053245, 78322024353, 227126864470, 659069928758, 1913612752613, 5559288014180
Offset: 7

Views

Author

Alois P. Heinz, Sep 05 2018

Keywords

Crossrefs

Column k=7 of A255704.

Programs

  • Maple
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
          `if`(d=k, 1, 0)), d=numtheory[divisors](j))*g(n-j, k), j=1..n)/n)
        end:
    a:= n-> (k-> g(n-1, k) -g(n-1, k-1))(7):
    seq(a(n), n=7..37);

A318904 Number of n-node rooted trees in which eight equals the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root.

Original entry on oeis.org

1, 1, 3, 8, 22, 60, 167, 465, 1305, 3677, 10407, 29545, 84137, 240180, 687169, 1969805, 5656352, 16267296, 46848655, 135089324, 389976522, 1126951399, 3259744738, 9437132452, 27342937037, 79281644947, 230037790501, 667888276997, 1940294941620, 5639933760363
Offset: 8

Views

Author

Alois P. Heinz, Sep 05 2018

Keywords

Crossrefs

Column k=8 of A255704.

Programs

  • Maple
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
          `if`(d=k, 1, 0)), d=numtheory[divisors](j))*g(n-j, k), j=1..n)/n)
        end:
    a:= n-> (k-> g(n-1, k) -g(n-1, k-1))(8):
    seq(a(n), n=8..38);

A318905 Number of n-node rooted trees in which nine equals the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root.

Original entry on oeis.org

1, 1, 3, 8, 22, 60, 167, 465, 1306, 3680, 10418, 29582, 84261, 240581, 688458, 1973887, 5669197, 16307404, 46973290, 135474784, 391164385, 1130600056, 3270921899, 9471289877, 27447106048, 79598738454, 231001452777, 670812581033, 1949157218646, 5666759197092
Offset: 9

Views

Author

Alois P. Heinz, Sep 05 2018

Keywords

Crossrefs

Column k=9 of A255704.

Programs

  • Maple
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
          `if`(d=k, 1, 0)), d=numtheory[divisors](j))*g(n-j, k), j=1..n)/n)
        end:
    a:= n-> (k-> g(n-1, k) -g(n-1, k-1))(9):
    seq(a(n), n=9..39);

A318906 Number of n-node rooted trees in which ten equals the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root.

Original entry on oeis.org

1, 1, 3, 8, 22, 60, 167, 465, 1306, 3681, 10421, 29593, 84298, 240705, 688859, 1975176, 5673279, 16320250, 47013406, 135599456, 391550002, 1131788538, 3274572887, 9482475518, 27481293566, 79703012121, 231318904534, 671777453618, 1952085567096, 5675634863875
Offset: 10

Views

Author

Alois P. Heinz, Sep 05 2018

Keywords

Crossrefs

Column k=10 of A255704.

Programs

  • Maple
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
          `if`(d=k, 1, 0)), d=numtheory[divisors](j))*g(n-j, k), j=1..n)/n)
        end:
    a:= n-> (k-> g(n-1, k) -g(n-1, k-1))(10):
    seq(a(n), n=10..40);
Showing 1-10 of 10 results.