A255705 Number of 2n+1-node rooted trees in which the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root equals n+1.
1, 1, 3, 8, 22, 60, 167, 465, 1306, 3681, 10422, 29597, 84313, 240757, 689035, 1975753, 5675145, 16326198, 47032200, 135658367, 391733593, 1132357784, 3276330780, 9487885056, 27497891241, 79753806451, 231474005120, 672250119756, 1953523496677, 5680002466125
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..800
Programs
-
Maple
with(numtheory): g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)- `if`(d=k, 1, 0)), d=divisors(j))*g(n-j, k), j=1..n)/n) end: a:= a-> g(2*n, n+1) -`if`(n=0, 0, g(2*n, n)): seq(a(n), n=0..40);
-
Mathematica
g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*(g[# - 1, k] - If[# == k, 1, 0]) &]*g[n - j, k], {j, 1, n}]/n]; a[n_] := g[2n, n+1] - If[n == 0, 0, g[2n, n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)
Formula
a(n) = A255704(2*n+1,n+1).
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.955765285651994974714817524... and c = 0.70755335886284109851526791506579... . - Vaclav Kotesovec, Feb 28 2016