cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255705 Number of 2n+1-node rooted trees in which the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root equals n+1.

Original entry on oeis.org

1, 1, 3, 8, 22, 60, 167, 465, 1306, 3681, 10422, 29597, 84313, 240757, 689035, 1975753, 5675145, 16326198, 47032200, 135658367, 391733593, 1132357784, 3276330780, 9487885056, 27497891241, 79753806451, 231474005120, 672250119756, 1953523496677, 5680002466125
Offset: 0

Views

Author

Alois P. Heinz, Mar 02 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
          `if`(d=k, 1, 0)), d=divisors(j))*g(n-j, k), j=1..n)/n)
        end:
    a:= a-> g(2*n, n+1) -`if`(n=0, 0, g(2*n, n)):
    seq(a(n), n=0..40);
  • Mathematica
    g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*(g[# - 1, k] - If[# == k, 1, 0]) &]*g[n - j, k], {j, 1, n}]/n];
    a[n_] :=  g[2n, n+1] - If[n == 0, 0, g[2n, n]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)

Formula

a(n) = A255704(2*n+1,n+1).
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.955765285651994974714817524... and c = 0.70755335886284109851526791506579... . - Vaclav Kotesovec, Feb 28 2016
a(n) = A318754(2n+2,n+1) = A318758(2n+2,n+1). - Alois P. Heinz, Sep 02 2018