cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255731 Rhonda numbers in sexagesimal number system.

Original entry on oeis.org

3348, 3510, 6750, 17430, 18750, 18876, 18944, 19475, 20564, 21312, 26550, 28280, 37230, 38396, 43940, 48042, 77770, 88270, 91224, 97470, 108882, 111403, 120046, 123630, 181996, 182646, 235467, 253460, 260429, 264735, 278675, 289161, 295960, 296055, 306642
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 05 2015

Keywords

Comments

See A099542 for definition of Rhonda numbers and for more links.

Examples

			a(1) = 3348 = 55 * 60^1 + 48 * 60^0 = 2*2*3*3*3*31,
with 55 * 48 = 60 * (2+2+3+3+3+31) = 2640;
a(10) = 21312 = 5*60^2 + 55*60^1 + 12*60^0 = 2*2*2*2*2*2*3*3*37,
with 5 * 55 * 12 = 60 * (2+2+2+2+2+2+3+3+37) = 3300.
		

Crossrefs

Cf. Rhonda numbers to other bases: A100968 (base 4), A100969 (base 6), A100970 (base 8), A100973 (base 9), A099542 (base 10), A100971 (base 12), A100972 (base 14), A100974 (base 15), A100975 (base 16), A255735 (base 18), A255732 (base 20), A255736 (base 30).
Column k=42 of A291925.

Programs

  • Haskell
    a255731 n = a255731_list !! (n-1)
    a255731_list = filter (rhonda 60) $ iterate z 1 where
       z x = 1 + if r < 59 then x else 60 * z x' where (x', r) = divMod x 60
    -- Function rhonda as in A099542.