A255732 Rhonda numbers in vigesimal number system.
1815, 11050, 15295, 21165, 22165, 30702, 34510, 34645, 42292, 44165, 52059, 53416, 65945, 78430, 80712, 84251, 84835, 86591, 112608, 146055, 148144, 156284, 175419, 178350, 194590, 200655, 201825, 202664, 204085, 209095, 209550, 211250, 212346, 212850
Offset: 1
Examples
a(1) = 1815 = 4*20^2 + 10*20^1 + 15*20^0 = 3*5*11*11, with 4 * 10 * 15 = 20 * (3+5+11+11) = 600; a(10) = 44165 = 5*20^3 + 10*20^2 + 8*20^1 + 5*20^0 = 5*11*11*73, with 5 * 10 * 8 * 5 = 20 * (5+11+11+73) = 2000.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Rhonda Number
- Wikipedia, Vigesimal
Crossrefs
Cf. Rhonda numbers to other bases: A100968 (base 4), A100969 (base 6), A100970 (base 8), A100973 (base 9), A099542 (base 10), A100971 (base 12), A100972 (base 14), A100974 (base 15), A100975 (base 16), A255735 (base 18), A255736 (base 30), A255731 (base 60), see also A255872.
Column k=11 of A291925.
Programs
-
Haskell
a255732 n = a255732_list !! (n-1) a255732_list = filter (rhonda 20) $ iterate z 1 where z x = 1 + if r < 29 then x else 30 * z x' where (x', r) = divMod x 30 -- Function rhonda as in A099542.
Comments