A255840 a(n) = (4*n^2 - 4*n + 1 - (-1)^n)/2.
0, 1, 4, 13, 24, 41, 60, 85, 112, 145, 180, 221, 264, 313, 364, 421, 480, 545, 612, 685, 760, 841, 924, 1013, 1104, 1201, 1300, 1405, 1512, 1625, 1740, 1861, 1984, 2113, 2244, 2381, 2520, 2665, 2812, 2965, 3120, 3281, 3444, 3613, 3784, 3961, 4140, 4325, 4512
Offset: 0
Examples
_ _|_|_ _ _ _ _|_|_|_|_ _|_|_ _|_|_|_ _|_|_|_|_|_|_ _ _ _|_|_|_|_ _|_|_|_|_|_ _|_|_|_|_|_|_|_|_ _ |_|_| |_|_|_|_|_| |_|_|_|_|_|_| |_|_|_|_|_|_|_|_|_| |_| |_|_| |_|_|_| |_|_|_|_|_|_| |_|_|_|_|_|_|_| |_| |_|_|_|_| |_|_|_|_|_| |_|_| |_|_|_| |_| n=1 n=2 n=3 n=4 n=5
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Magma
[(4*n^2 - 4*n + 1 - (-1)^n)/2 : n in [0..100]];
-
Maple
A255840:=n->(4*n^2 - 4*n + 1 - (-1)^n)/2: seq(A255840(n), n=0..100);
-
Mathematica
CoefficientList[Series[x (1 + 2 x + 5 x^2)/((1 + x) (1 - x)^3), {x, 0, 50}], x]
-
PARI
vector(100,n,(4*(n-1)^2 - 4*(n-1) + 1 + (-1)^n)/2) \\ Derek Orr, Mar 09 2015
Formula
G.f.: x*(1+2*x+5*x^2)/((1+x)*(1-x)^3).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) - a(n-1) = A047471(n). - Wesley Ivan Hurt, Apr 28 2017
Comments