A255842 a(n) = 2*n^2 + 12.
12, 14, 20, 30, 44, 62, 84, 110, 140, 174, 212, 254, 300, 350, 404, 462, 524, 590, 660, 734, 812, 894, 980, 1070, 1164, 1262, 1364, 1470, 1580, 1694, 1812, 1934, 2060, 2190, 2324, 2462, 2604, 2750, 2900, 3054, 3212, 3374, 3540, 3710, 3884, 4062, 4244, 4430
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[2*n^2+12: n in [0..50]];
-
Mathematica
Table[2 n^2 + 12, {n, 0, 50}]
-
PARI
vector(50, n, n--; 2*n^2+12)
-
Sage
[2*n^2+12 for n in (0..50)]
Formula
G.f.: 2*(6 - 11*x + 7*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A114949(n).
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(6)*Pi*coth(sqrt(6)*Pi))/24.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(6)*Pi*cosech(sqrt(6)*Pi))/24. (End)
E.g.f.: 2*exp(x)*(6 + x + x^2). - Elmo R. Oliveira, Jan 24 2025
Extensions
Edited by Bruno Berselli, Mar 11 2015
Comments