A255844 a(n) = 2*n^2 + 6.
6, 8, 14, 24, 38, 56, 78, 104, 134, 168, 206, 248, 294, 344, 398, 456, 518, 584, 654, 728, 806, 888, 974, 1064, 1158, 1256, 1358, 1464, 1574, 1688, 1806, 1928, 2054, 2184, 2318, 2456, 2598, 2744, 2894, 3048, 3206, 3368, 3534, 3704, 3878, 4056, 4238, 4424, 4614
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[2*n^2+6: n in [0..50]];
-
Mathematica
Table[2 n^2 + 6, {n, 0, 50}]
-
PARI
vector(50, n, n--; 2*n^2+6)
-
Sage
[2*n^2+6 for n in (0..50)]
Formula
G.f.: 2*(3-5*x+4*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A117950(n).
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(3)*Pi*coth(sqrt(3)*Pi))/12.
Sum_{n>=0} (-1)^n/a(n) = (1 + (sqrt(3)*Pi)*cosech(sqrt(3)*Pi))/12. (End)
E.g.f.: 2*exp(x)*(3 + x + x^2). - Elmo R. Oliveira, Jan 25 2025
Extensions
Corrected and extended by Bruno Berselli, Mar 11 2015
Comments