A255854 Least k > 0 such that gcd(k^n+4, (k+1)^n+4) > 1, or 0 if there is no such k.
1, 0, 8, 210, 1, 82, 128, 4763358550, 1, 22, 8, 4050643070777669523228, 1, 1010633974733, 7784, 100, 1, 26627469676193276478340, 8, 179, 1, 4082, 48, 1293523748876425462850, 1, 173, 8, 5, 1, 2423, 320, 342, 1, 1162, 8, 93, 1, 455207, 128, 22, 1, 11383, 8, 58768, 1, 91, 96, 306824898, 1, 187751, 8, 84, 1
Offset: 0
Keywords
Examples
For n=1, gcd(k^n+4, (k+1)^n+4) = gcd(k+4, k+5) = 1, therefore a(1)=0. For n=2, we have gcd(8^2+4, 9^2+4) = gcd(68, 85) = 17, and the pair (k,k+1)=(8,9) is the smallest with this property, therefore a(2)=8. More generally, a(8k+2)=8 because gcd(8^(8k+2)+4, 9^(8k+2)+4) = gcd(64^(4k+1)+4, 81^(4k+1)+4) >= 17, since 64 = 81 = 13 (mod 17) and 13^4 = 1 (mod 17). Also a(4k)=1, because gcd(1^(4k)+4, 2^(4k)+4) = gcd(5, 16^k-1) = 5.
Programs
-
Mathematica
A255854[n_] := Module[{m = 1}, While[GCD[m^n + 4, (m + 1)^n + 4] <= 1, m++]; m]; Join[{1, 0}, Table[A255854[n], {n, 2, 6}]] (* Robert Price, Oct 15 2018 *)
-
PARI
a(n,c=4,L=10^6,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))}
-
Python
from sympy import primefactors, resultant, nthroot_mod from sympy.abc import x def A255854(n): if n == 0: return 1 k = 0 for p in primefactors(resultant(x**n+4,(x+1)**n+4)): for d in (a for a in sorted(nthroot_mod(-4,n,p,all_roots=True)) if pow(a+1,n,p)==-4%p): k = min(d,k) if k else d break return int(k) # Chai Wah Wu, May 08 2024
Formula
a(4k)=1, a(8k+2)=8 (k>=0), cf. examples.
Extensions
a(7)-a(46) from Hiroaki Yamanouchi, Mar 13 2015
a(47)-a(52) from Max Alekseyev, Aug 06 2015
Comments