A255855 Least k > 0 such that gcd(k^n+5, (k+1)^n+5) > 1, or 0 if there is no such k.
1, 0, 1, 5, 1, 533360, 1, 55, 1, 7, 1, 796479131355665831357, 1, 41, 1, 5, 1, 3775, 1, 42296, 1, 7, 1, 653246700175064613889, 1, 21, 1, 5, 1, 1619, 1, 42842, 1, 7, 1, 2945, 1, 323371, 1, 5, 1, 1102221, 1, 633524110177, 1, 7, 1
Offset: 0
Examples
For n=1, gcd(k^n+5, (k+1)^n+5) = gcd(k+5, k+6) = 1, therefore a(1)=0. For n=2k, see formula. For n=3, we have gcd(5^3+5, 6^3+5) = 13, and the pair (k,k+1)=(5,6) is the smallest which yields a GCD > 1, therefore a(3)=5.
Programs
-
Mathematica
A255855[n_] := Module[{m = 1}, While[GCD[m^n + 5, (m + 1)^n + 5] <= 1, m++]; m]; Join[{1, 0}, Table[A255855[n], {n, 2, 10}]]
-
PARI
a(n,c=5,L=10^7,S=1)->for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))
-
Python
from sympy import primefactors, resultant, nthroot_mod from sympy.abc import x def A255855(n): if n == 0: return 1 k = 0 for p in primefactors(resultant(x**n+5,(x+1)**n+5)): for d in (a for a in sorted(nthroot_mod(-5,n,p,all_roots=True)) if pow(a+1,n,p)==-5%p): k = min(d,k) if k else d break return int(k) # Chai Wah Wu, May 08 2024
Formula
a(2k)=1 for k>=0, because gcd(1^(2k)+5,2^(2k)+5) = gcd(6,4^k-1) = 3.
Extensions
a(11)-a(46) from Hiroaki Yamanouchi, Mar 12 2015
Comments