A255863 Least m > 0 such that gcd(m^n+13, (m+1)^n+13) > 1, or 0 if there is no such m.
1, 0, 26, 1, 5, 24308100, 1, 329, 71, 1, 6, 59, 1, 135, 5, 1, 23, 7711, 1, 82, 6, 1, 8, 320594291825643656342, 1, 45, 10, 1, 755, 1107, 1, 4279, 30269, 1, 5, 205961, 1, 259, 8, 1, 9, 101975, 1, 6491, 5, 1, 8
Offset: 0
Examples
For n=1, gcd(m^n+13, (m+1)^n+13) = gcd(m+13, m+14) = 1, therefore a(1)=0. For n=2, gcd(26^2+13, 27^2+13) = 53, and (m, m+1) = (26, 27) is the smallest pair which yields a GCD > 1 here. For n=0, n=3, n=6,... see formula.
Programs
-
Mathematica
A255863[n_] := Module[{m = 1}, While[GCD[m^n + 13, (m + 1)^n + 13] <= 1, m++]; m]; Join[{1, 0}, Table[A255863[n], {n, 2, 22}]] (* Robert Price, Oct 16 2018 *)
-
PARI
a(n,c=13,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}
Formula
a(3k) = 1 for k>=0, because 1^(3k)+13 = 14, 2^(3k)+13 = 8^k+13 = 14 (mod 7), therefore gcd(1^(3k)+13, 2^(3k)+13) >= 7.
Extensions
a(5)-a(46) from Hiroaki Yamanouchi, Mar 12 2015
Comments