cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255863 Least m > 0 such that gcd(m^n+13, (m+1)^n+13) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 26, 1, 5, 24308100, 1, 329, 71, 1, 6, 59, 1, 135, 5, 1, 23, 7711, 1, 82, 6, 1, 8, 320594291825643656342, 1, 45, 10, 1, 755, 1107, 1, 4279, 30269, 1, 5, 205961, 1, 259, 8, 1, 9, 101975, 1, 6491, 5, 1, 8
Offset: 0

Views

Author

M. F. Hasler, Mar 10 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=1, gcd(m^n+13, (m+1)^n+13) = gcd(m+13, m+14) = 1, therefore a(1)=0.
For n=2, gcd(26^2+13, 27^2+13) = 53, and (m, m+1) = (26, 27) is the smallest pair which yields a GCD > 1 here.
For n=0, n=3, n=6,... see formula.
		

Crossrefs

Programs

  • Mathematica
    A255863[n_] := Module[{m = 1}, While[GCD[m^n + 13, (m + 1)^n + 13] <= 1, m++]; m]; Join[{1, 0}, Table[A255863[n], {n, 2, 22}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=13,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}

Formula

a(3k) = 1 for k>=0, because 1^(3k)+13 = 14, 2^(3k)+13 = 8^k+13 = 14 (mod 7), therefore gcd(1^(3k)+13, 2^(3k)+13) >= 7.

Extensions

a(5)-a(46) from Hiroaki Yamanouchi, Mar 12 2015