A255899 Decimal expansion of Mrs. Miniver's constant.
5, 2, 9, 8, 6, 4, 1, 6, 9, 2, 0, 5, 5, 5, 3, 7, 2, 4, 8, 6, 8, 2, 3, 2, 9, 8, 9, 5, 2, 5, 1, 4, 2, 1, 3, 7, 3, 0, 0, 3, 8, 0, 1, 3, 2, 0, 8, 2, 7, 2, 8, 9, 0, 5, 7, 5, 7, 4, 8, 9, 7, 8, 6, 5, 8, 4, 1, 8, 0, 5, 0, 1, 7, 4, 1, 3, 7, 7, 2, 7, 7, 9, 4, 5, 4, 6, 9, 9, 7, 0, 4, 6, 7, 4, 9, 2, 3, 6, 8, 8, 8, 2, 1, 1, 8
Offset: 0
Examples
0.5298641692055537248682329895251421373003801320827289...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 487.
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2021, p. 62.
Crossrefs
Cf. A192408.
Programs
-
Mathematica
d = x /. FindRoot[2*ArcCos[x/2] - (1/2)*x*Sqrt[4 - x^2] == 2*Pi/3, {x, 1/2}, WorkingPrecision -> 105]; RealDigits[d] // First
-
PARI
solve (x=0, 2, 2*acos(x/2) - (1/2)*x*sqrt(4 - x^2) - 2*Pi/3) \\ Michel Marcus, Mar 10 2015
Formula
The unique root of the equation 2*arccos(x/2) - (1/2)*x*sqrt(4 - x^2) = 2*Pi/3 in the interval [0,2].
Equals 2*cos(A336082 /2). - Robert FERREOL, Feb 18 2022
Comments