A255905 Expansion of exp( Sum_{n >= 1} R(n,u)*x^n/n ), where R(n,u) denotes the n-th row polynomial of A086646.
1, 1, 1, 3, 4, 1, 23, 31, 9, 1, 371, 484, 128, 16, 1, 10515, 13407, 3228, 360, 25, 1, 461869, 581680, 132291, 13260, 815, 36, 1, 28969177, 36241581, 7981991, 749199, 41167, 1603, 49, 1, 2454072147, 3058280624, 660958100, 59706312, 3060128, 106232, 2856, 64, 1
Offset: 0
Examples
The triangle begins n\k| 0 1 2 3 4 5 6 = = = = = = = = = = = = = = = = = = = = = = 0 | 1 1 | 1 1 2 | 3 4 1 3 | 23 31 9 1 4 | 371 484 128 16 1 5 | 10515 13407 3228 360 25 1 6 | 461869 581680 132291 13260 815 36 1
Programs
Formula
O.g.f.: exp( Sum_{n >= 1} R(n,u)*x^n/n ) = exp( (1 + u)*x + (5 + 6*u + u^2)*x^2/2 + (61 + 75*u + 15*u^2 + u^3)*x^3/3 + ... ) = 1 + (1 + u)*x + (3 + 4*u + u^2)*x^2 + (23 + 31*u + 9*u^2 + u^3)*x^3 + ....
Comments