cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255932 a(n) is the denominator of Gamma(n+1/2)^2/(2*n*Pi), the value of an integral with sinh in the denominator.

Original entry on oeis.org

8, 64, 128, 2048, 2048, 16384, 32768, 1048576, 524288, 4194304, 8388608, 134217728, 134217728, 1073741824, 2147483648, 137438953472, 34359738368, 274877906944, 549755813888, 8796093022208, 8796093022208, 70368744177664, 140737488355328
Offset: 1

Views

Author

Jean-François Alcover, Mar 11 2015

Keywords

Comments

Conjecture: a(n) <= 2^(3*n). - Vaclav Kotesovec, Mar 11 2015

Examples

			1/8, 9/64, 75/128, 11025/2048, 178605/2048, 36018675/16384, 2608781175/32768, ...
		

Crossrefs

Cf. A255931 (numerators), A292608.

Programs

  • Maple
    seq(2^A292608(n), n=1..23); # Peter Luschny, Sep 23 2017
  • Mathematica
    a[n_] := Gamma[n+1/2]^2/(2*n*Pi) // Denominator; Array[a, 30]
    Table[(2*n)!^2 / (n * 2^(4*n+1) * n!^2), {n, 1, 20}] // Denominator (* Vaclav Kotesovec, Mar 11 2015 *)
    b[n_] := 2*n + 1 + IntegerExponent[n,2]; Table[2^b[n], {n,1,23}] (* Peter Luschny, Sep 23 2017 *)

Formula

The n-th fraction also equals the n-th coefficient in the expansion of 2F1(1/2,1/2; 1; x) * n!*(n-1)!/2.
a(n) = 2^(2*n + 1 + valuation(n, 2)) = 2^A292608(n). - Peter Luschny, Sep 23 2017