A255932 a(n) is the denominator of Gamma(n+1/2)^2/(2*n*Pi), the value of an integral with sinh in the denominator.
8, 64, 128, 2048, 2048, 16384, 32768, 1048576, 524288, 4194304, 8388608, 134217728, 134217728, 1073741824, 2147483648, 137438953472, 34359738368, 274877906944, 549755813888, 8796093022208, 8796093022208, 70368744177664, 140737488355328
Offset: 1
Examples
1/8, 9/64, 75/128, 11025/2048, 178605/2048, 36018675/16384, 2608781175/32768, ...
Links
Programs
-
Maple
seq(2^A292608(n), n=1..23); # Peter Luschny, Sep 23 2017
-
Mathematica
a[n_] := Gamma[n+1/2]^2/(2*n*Pi) // Denominator; Array[a, 30] Table[(2*n)!^2 / (n * 2^(4*n+1) * n!^2), {n, 1, 20}] // Denominator (* Vaclav Kotesovec, Mar 11 2015 *) b[n_] := 2*n + 1 + IntegerExponent[n,2]; Table[2^b[n], {n,1,23}] (* Peter Luschny, Sep 23 2017 *)
Formula
The n-th fraction also equals the n-th coefficient in the expansion of 2F1(1/2,1/2; 1; x) * n!*(n-1)!/2.
a(n) = 2^(2*n + 1 + valuation(n, 2)) = 2^A292608(n). - Peter Luschny, Sep 23 2017
Comments