cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A255903 Number T(n,k) of collections of nonempty multisets with a total of n objects of exactly k colors; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 8, 5, 0, 5, 23, 33, 15, 0, 7, 56, 141, 144, 52, 0, 11, 127, 492, 848, 675, 203, 0, 15, 268, 1518, 3936, 5190, 3396, 877, 0, 22, 547, 4320, 15800, 30710, 32835, 18270, 4140, 0, 30, 1072, 11567, 57420, 154410, 240012, 216006, 104656, 21147
Offset: 0

Views

Author

Alois P. Heinz, Mar 10 2015

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n.
In the case of exactly one color (k=1) each multiset of monochrome objects is fully described by its size and a collection of sizes corresponds to an integer partition. In the case of distinct colors for all objects (k=n) every multiset collection is a set partition.

Examples

			T(3,1) = 3: {{1},{1},{1}}, {{1},{1,1}}, {{1,1,1}}.
T(3,2) = 8: {{1},{1},{2}}, {{1},{2},{2}}, {{1},{1,2}}, {{1},{2,2}}, {{2},{1,1}}, {{2},{1,2}}, {{1,1,2}}, {{1,2,2}}.
T(3,3) = 5: {{1},{2},{3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1,2,3}}.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  2,   2;
  0,  3,   8,    5;
  0,  5,  23,   33,    15;
  0,  7,  56,  141,   144,    52;
  0, 11, 127,  492,   848,   675,   203;
  0, 15, 268, 1518,  3936,  5190,  3396,   877;
  0, 22, 547, 4320, 15800, 30710, 32835, 18270, 4140;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000041 (for n>0), A255942, A255943, A255944, A255945, A255946, A255947, A255948, A255949, A255950.
Main and lower diagonals give: A000110, A255951, A255952, A255953, A255954, A255955, A255956, A255957, A255958, A255959, A255960.
Row sums give A255906.
Antidiagonal sums give A258450.
T(2n,n) gives A255907.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(A(n-j, k)*
          add(d*binomial(d+k-1, k-1), d=divisors(j)), j=1..n)/n)
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-j, k]*Sum[d*Binomial[d+k-1, k-1], {d, Divisors[j]}], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i * Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12} ] // Flatten (* Jean-François Alcover, Feb 20 2016, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A075196(n,k-i).
Sum_{k=0..n} k * T(n,k) = A317178(n).
Showing 1-1 of 1 results.