A255985 a(n) = 1 for n <= 6; a(n) = 49*a(n-1) - 882*a(n-2) + 8820*a(n-3) - 52920*a(n-4) + 190512*a(n-5) - 381024*a(n-6) + 326592*a(n-7) otherwise.
1, 1, 1, 1, 1, 1, 1, 91147, 4557301, 143008075, 3791855893, 95039848267, 2350059062869, 58037421216523, 1434206075225749, 35454497256469963, 876533685507121621, 21670381641194181259, 535748905642908896533, 13245082208240954261323
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..720
- Alexander Samokrutov, Coefficients k1, k2, k3, k4, k5, k6, k7
- Index entries for linear recurrences with constant coefficients, signature (49,-882,8820,-52920,190512,-381024,326592).
Programs
-
Magma
[n le 7 select 1 else 49*Self(n-1)-882*Self(n-2)+8820*Self(n-3)-52920*Self(n-4)+190512*Self(n-5) -381024*Self(n-6) +326592*Self(n-7): n in [1..30]]; // Vincenzo Librandi, Mar 21 2015
-
Mathematica
LinearRecurrence[{49, -882, 8820, -52920, 190512, -381024, 326592}, {1, 1, 1, 1, 1, 1, 1}, 20] (* Vincenzo Librandi, Mar 21 2015 *)
-
PARI
Vec(-(235446*x^6 -145578*x^5 +44934*x^4 -7986*x^3 +834*x^2 -48*x +1) / (326592*x^7 -381024*x^6 +190512*x^5 -52920*x^4 +8820*x^3 -882*x^2 +49*x -1) + O(x^100)) \\ Colin Barker, Mar 13 2015
Formula
a(n) = 49*a(n-1) -882*a(n-2) +8820*a(n-3) -52920*a(n-4) +190512*a(n-5) -381024*a(n-6) +326592*a(n-7).
G.f.: -(235446*x^6 -145578*x^5 +44934*x^4 -7986*x^3 +834*x^2 -48*x +1) / (326592*x^7 -381024*x^6 +190512*x^5 -52920*x^4 +8820*x^3 -882*x^2 +49*x -1). - Colin Barker, Mar 13 2015
Comments