A256006 Recurrence: a(n) = Sum_{k=0..n-1} a(k)*C(n+1,k), a(0)=1.
1, 1, 4, 29, 336, 5687, 132294, 4047969, 157601068, 7607093435, 445794008034, 31177310522789, 2564976392355144, 245223349515360543, 26959450820298057694, 3377267272710103354409, 478240674001176206987556, 76011318838172580152245187
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..260
- Christian Blatter, How many ways to merge N companies into one big company: Bell or Catalan?, Math StackExchange.
- Johannes Wirtz, On the enumeration of leaf-labelled increasing trees with arbitrary node-degree, arXiv:2211.03632 [q-bio.PE], 2022.
Crossrefs
Cf. A103996.
Programs
-
Mathematica
nmax = 30; aa = ConstantArray[0,nmax+1]; aa[[1]] = 1; Do[aa[[n+1]]=Sum[Binomial[n+1,k]*aa[[k+1]],{k,0,n-1}],{n,nmax}]; aa
Formula
a(n) ~ c * n^(2*n+8/3) / (2^n * exp(2*n)), where c = 4.001655169623968944922713533374039000521095549333460838578... .
E.g.f. A(x) satisfies A(x) = A'(x)*(exp(x) - 1 - x) + x (see Wirtz at page 7). - Stefano Spezia, Nov 13 2022
Comments