A256011 Integers n with the property that the largest prime factor of n^2 + 1 is less than n.
7, 18, 21, 38, 41, 43, 47, 57, 68, 70, 72, 73, 83, 99, 111, 117, 119, 123, 128, 132, 133, 142, 157, 172, 173, 174, 182, 185, 191, 192, 193, 200, 211, 212, 216, 233, 237, 239, 242, 251, 253, 255, 265, 268, 273, 278, 293, 294, 302, 305, 307, 313, 319, 322, 327
Offset: 1
Keywords
Examples
7^2 + 1 = 50 = 2 * 5^2; 18^2 + 1 = 325 = 5^2 * 13; 21^2 + 1 = 442 = 2 * 13 * 17.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[k:k in [1..330]| Max(PrimeDivisors(k^2+1)) lt k]; // Marius A. Burtea, Jul 27 2019
-
Maple
select(n -> max(numtheory:-factorset(n^2+1))
Robert Israel, Jun 09 2015 -
Mathematica
Select[Range[10^4], FactorInteger [#^2 + 1][[-1, 1]] < # &] (* Giovanni Resta, Jun 09 2015 *)
-
PARI
for(n=1,10^3,N=n^2+1;if(factor(N)[,1][omega(N)] < n,print1(n,", "))) \\ Derek Orr, Jun 08 2015
-
PARI
is(n)=my(f=factor(n^2+1)[,1]); f[#f]
Charles R Greathouse IV, Jun 09 2015
Comments