cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256045 Triangle read by rows: order of all-2s configuration on the n X k sandpile grid graph.

Original entry on oeis.org

2, 3, 1, 7, 7, 8, 11, 5, 71, 3, 26, 9, 679, 77, 52, 41, 13, 769, 281, 17753, 29, 97, 47, 3713, 4271, 726433, 434657, 272, 153, 17, 8449, 2245, 33507, 167089, 46069729, 901, 362, 123, 81767, 8569, 24852386, 265721, 8118481057, 190818387, 73124, 571, 89, 93127, 18061, 20721019, 4213133, 4974089647, 1031151241, 1234496016491, 89893
Offset: 1

Views

Author

N. J. A. Sloane, Mar 15 2015

Keywords

Examples

			Triangle begins:
[2]
[3, 1]
[7, 7, 8]
[11, 5, 71, 3]
[26, 9, 679, 77, 52]
[41, 13, 769, 281, 17753, 29]
[97, 47, 3713, 4271, 726433, 434657, 272]
[153, 17, 8449, 2245, 33507, 167089, 46069729, 901]
[362, 123, 81767, 8569, 24852386, 265721, 8118481057, 190818387, 73124]
[571, 89, 93127, 18061, 20721019, 4213133, 4974089647, 1031151241, 1234496016491, 89893]
...
		

Crossrefs

Main diagonal gives A256046, A256043, and A256047.

Formula

From Andrey Zabolotskiy, Oct 22 2021: (Start)
It seems that T(k, 1) = A005246(k+2).
For the formula for T(k, 2), see the last theorem of Morar and Perkinson in Perkinson's slides. In particular, T(2*k, 2) = A195549(k).
T(n, k) divides A348566(n, k). (End)

Extensions

Column 1 added by Andrey Zabolotskiy, Oct 22 2021